def load_blacklist(self): filename = self.blacklist_filename() if not os.path.exists(filename): blacklist = set() else: blacklist = utils.load_obj(filename) return blacklist
def load_dicts(self, variant): filename = self.cache_filename(variant) if not os.path.exists(filename): cache = self.default_cache() else: cache = utils.load_obj(filename) return cache
def load_all_models(self): db = self.fetch_model_db() #first empty current models by saving self.save_all_live_models() for name, model_path in db.items(): model = load_obj(model_path) #add to live models self.live_models.append(model)
def load_model(self, name): #grab model path db = self.fetch_model_db() model_path = db[name] model = load_obj(model_path) #add to live models self.live_models.append(model) return model
def r2_compare(modeldb_path, impute_dir, y, exportpath=None, SpecialTag=None): tag = SpecialTag if os.path.isfile(modeldb_path): modeldb = load_obj(modeldb_path) else: print("modeldb not found") return cols = modeldb.columns.tolist() if "test_r2" not in cols: curr_db = modeldb elif tag: query = "r2_test > 0 | SpecialTag == " + str(tag) curr_db = modeldb.query(query) else: curr_db = modeldb.query("r2_test > 0") #load imputed data cooked_data_file = impute_dir + "/imputed.pk" train_fp = impute_dir + "/train.pk" test_fp = impute_dir + "/test.pk" cooked_df = load_obj(cooked_data_file) train_i = load_obj(train_fp) train_df = cooked_df.iloc[train_i] test_i = load_obj(test_fp) test_df = cooked_df.iloc[test_i] #get all metrics from DF temp_metrics_df = curr_db.apply( lambda row: r2_model(row["FullPath"], row["TransformTag"], y, row[ 'ModelNum'], train_df, test_df), axis=1) new_columns = ['ModelNum', 'r2_test', 'mse_test', 'r2_train', 'mse_train'] temp_metrics_df.columns = new_columns modeldb = pd.merge(modeldb, temp_metrics_df, how='left', on='ModelNum')
def load_model_object(self): model_object = load_obj(self.model_object_path) self.model_object = model_object
def load_df(self): df = load_obj(self.dataframe_path) self.df = df
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') args = parser.parse_args() args = vars(args) in_coord_sys = args['in_coord_sys'] out_coord_sys = args['out_coord_sys'] exp_name = args['exp_name'] assert (in_coord_sys in ['OASIS', 'NYU', 'SNOW']) assert (out_coord_sys in ['OASIS', 'NYU', 'SNOW']) if args['model_file'].find(".bin") >= 0: mode = 'model' training_args = load_obj( os.path.join(os.path.dirname(os.path.dirname(args['model_file'])), 'args.pkl')) print( "#######################################################################" ) print("Testing a model, args: {}".format(args)) print( "#######################################################################" ) NetworkType = {"NIPSSurface": NIPSSurfaceNetwork} model = NetworkType[training_args['model_name']]().to(device) model_name = training_args['model_name']
def default_jobs(): return { 'match_queue': job_queue.JobQueue(), 'split_queue': job_queue.JobQueue(), 'number_of_match_job': 0, 'number_of_split_job': 0 } if __name__ == "__main__": try: cache_dir = 'match_and_split_text_layer' if not os.path.exists(os.path.expanduser('~/cache/' + cache_dir)): os.mkdir(os.path.expanduser('~/cache/' + cache_dir)) # qdel send a SIGUSR2 if -notify is used when starting the job. # import signal #signal.signal(signal.SIGUSR2, on_exit) try: jobs = utils.load_obj("wsdaemon.jobs") except: jobs = default_jobs() thread.start_new_thread(job_thread, (jobs['match_queue'], do_match)) thread.start_new_thread(job_thread, (jobs['split_queue'], do_split)) bot_listening() except KeyboardInterrupt: pywikibot.stopme() os._exit(1) finally: pywikibot.stopme()
def default_jobs(): return { 'match_queue' : job_queue.JobQueue(), 'split_queue' : job_queue.JobQueue(), 'number_of_match_job' : 0, 'number_of_split_job' : 0 } if __name__ == "__main__": try: cache_dir = 'match_and_split_text_layer' if not os.path.exists(os.path.expanduser('~/cache/' + cache_dir)): os.mkdir(os.path.expanduser('~/cache/' + cache_dir)) # qdel send a SIGUSR2 if -notify is used when starting the job. # import signal #signal.signal(signal.SIGUSR2, on_exit) try: jobs = utils.load_obj("wsdaemon.jobs") except: jobs = default_jobs() thread.start_new_thread(job_thread, (jobs['match_queue'], do_match)) thread.start_new_thread(job_thread, (jobs['split_queue'], do_split)) bot_listening() except KeyboardInterrupt: pywikibot.stopme() os._exit(1) finally: pywikibot.stopme()
def load_dataset(self, name): #grab dataset path db = self.fetch_dataset_db() ds_path = db[name] ds = load_obj(ds_path) return ds