コード例 #1
0
ファイル: model_cifar.py プロジェクト: CV-IP/ME-ADA
    def maximize(self, flags):
        self.network.eval()

        self.train_data.transform = self.preprocess
        self.train_loader = torch.utils.data.DataLoader(
            self.train_data,
            batch_size=flags.batch_size,
            shuffle=False,
            num_workers=flags.num_workers,
            pin_memory=True)
        images, labels = [], []

        for i, (images_train, labels_train) in enumerate(self.train_loader):

            # wrap the inputs and labels in Variable
            inputs, targets = images_train.cuda(), labels_train.cuda()

            # forward with the adapted parameters
            inputs_embedding = self.network(x=inputs)[-1]['Embedding'].detach().clone()
            inputs_embedding.requires_grad_(False)

            inputs_max = inputs.detach().clone()
            inputs_max.requires_grad_(True)
            optimizer = sgd(parameters=[inputs_max], lr=flags.lr_max)

            for ite_max in range(flags.loops_adv):
                tuples = self.network(x=inputs_max)

                # loss
                loss = self.loss_fn(tuples[0], targets) + flags.eta * entropy_loss(tuples[0]) - \
                       flags.gamma * self.dist_fn(tuples[-1]['Embedding'], inputs_embedding)

                # init the grad to zeros first
                self.network.zero_grad()
                optimizer.zero_grad()

                # backward your network
                (-loss).backward()

                # optimize the parameters
                optimizer.step()

                flags_log = os.path.join(flags.logs, 'max_loss_log.txt')
                write_log('ite_adv:{}, {}'.format(ite_max, loss.item()), flags_log)

            inputs_max = inputs_max.detach().clone().cpu()
            for j in range(len(inputs_max)):
                input_max = self.image_denormalise(inputs_max[j])
                input_max = self.image_transform(input_max.clamp(min=0.0, max=1.0))
                images.append(input_max)
                labels.append(labels_train[j].item())

        return np.stack(images), labels
コード例 #2
0
def fit_and_plot(lambd):
    epochs = 100
    lr = 0.003
    params = init_params()
    train_ls, test_ls = [], []
    for epoch in range(epochs):
        for X, y in train_iter:
            l = loss(net(X, *params), y) + lambd * l2_penalty(params[0])
            l = l.sum()
            for param in params:
                if param.grad is not None:
                    param.grad.data.zero_()
            l.backward()
            sgd(params, lr, batch_size)
        train_ls.append(
            loss(net(train_features, *params), train_labels).mean().item())
        test_ls.append(
            loss(net(test_features, *params), test_labels).mean().item())
    plt.semilogy(range(1, epochs + 1), train_ls, label='train loss')
    plt.semilogy(range(1, epochs + 1), test_ls, label='test loss')
    plt.legend()
    plt.show()
    print('L2 norm of w:', params[0].norm().item())
コード例 #3
0
ファイル: model_mnist.py プロジェクト: CV-IP/ME-ADA
    def maximize(self, flags):
        self.network.eval()

        images_train, labels_train = self.batImageGenTrain.images, self.batImageGenTrain.labels
        images, labels = [], []

        for start, end in zip(range(0, len(labels_train), flags.batch_size),
                              range(flags.batch_size, len(labels_train), flags.batch_size)):
            inputs, targets = torch.from_numpy(
                np.array(images_train[start:end], dtype=np.float32)), torch.from_numpy(
                np.array(labels_train[start:end], dtype=np.float32))

            # wrap the inputs and labels in Variable
            inputs, targets = Variable(inputs, requires_grad=False).cuda(), \
                              Variable(targets, requires_grad=False).long().cuda()

            inputs_embedding = self.network(x=inputs)[-1]['Embedding'].detach().clone()
            inputs_embedding.requires_grad_(False)

            inputs_max = inputs.detach().clone()
            inputs_max.requires_grad_(True)
            optimizer = sgd(parameters=[inputs_max], lr=flags.lr_max)

            for ite_max in range(flags.loops_adv):
                tuples = self.network(x=inputs_max)

                # loss
                loss = self.loss_fn(tuples[0], targets) + flags.eta * entropy_loss(tuples[0]) - \
                       flags.gamma * self.dist_fn(tuples[-1]['Embedding'], inputs_embedding)

                # init the grad to zeros first
                self.network.zero_grad()
                optimizer.zero_grad()

                # backward your network
                (-loss).backward()

                # optimize the parameters
                optimizer.step()

                flags_log = os.path.join(flags.logs, 'max_loss_log.txt')
                write_log('ite_adv:{}, {}'.format(ite_max, loss.item()), flags_log)

            inputs_max = inputs_max.detach().clone().clamp(min=0.0, max=1.0)
            images.append(inputs_max.cpu().numpy())
            labels.append(targets.cpu().numpy())

        return np.concatenate(images), np.concatenate(labels)
コード例 #4
0
        H1 = dropout(H1, 0.2)
    H2 = (torch.matmul(H1, w2) + b2).relu()
    if is_training:
        H2 = dropout(H2, 0.5)
    return torch.matmul(H2, w3) + b3


# 定义损失函数
loss = torch.nn.CrossEntropyLoss()

# 训练模型
lr = 100
num_epochs = 5

for epoch in range(num_epochs):
    train_loss_sum, train_acc_sum, n = 0.0, 0.0, 0
    for X, y in train_iter:
        y_hat = net(X)
        l = loss(y_hat, y)
        for param in params:
            if param.grad is not None:
                param.grad.data.zero_()
        l.backward()
        sgd(params, batch_size=batch_size, lr=lr)
        train_loss_sum += l
        train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()
        n += y.shape[0]
    test_acc = evaluate_accuracy(test_iter, net)
    print("epoch: %d, train loss: %.4f, train acc: %.3f, test acc: %.3f" % \
          (epoch + 1, train_loss_sum / n, train_acc_sum / n, test_acc))
コード例 #5
0
    u1 = torch.matmul(X.view(X.shape[0], -1), W1) + b1
    a1 = relu(u1)
    return torch.matmul(a1, W2) + b2


# 定义损失函数
loss = torch.nn.CrossEntropyLoss()

# 定义优化器
# 已经定义了优化器sgd

# 训练网络
epochs = 5
lr = 100
for epoch in range(epochs):
    train_loss_sum, train_acc_num, n = 0.0, 0.0, 0
    for X, y in train_iter:
        y_hat = net(X)
        l = loss(y_hat, y)
        for param in params:
            if param.grad is not None:
                param.grad.data.zero_()
        l.backward()
        sgd(params, lr, batch_size)
        train_loss_sum += l.item()
        train_acc_num += (y_hat.argmax(dim=1) == y).sum().item()
        n += y.shape[0]
    test_accuracy = evaluate_accuracy(test_iter, net)
    print("epoch: %d, train loss: %.4f, train accuracy rate: %.3f, test accuracy: %.3f" % \
          (epoch + 1, train_loss_sum / n, train_acc_num / n, test_accuracy))