コード例 #1
0
    def reduce_memory(self, temp_df, ttime_df):
        """

        :param temp_df:
        :param ttime_df:
        :return:
        """

        # set dictionary of Dtypes to reduce size requirement of travel time dataframe
        dtype_temp_df = {}
        dtype_defs = common.dtype_defintions(
            control_parameters.dirListing,
            control_parameters.EarlyValidFiles.getJSONFileList())
        dtype_temp_df = dtype_defs[
            control_parameters.EarlyValidFiles.DTYPE_TRESO_TRIPS]
        dtype_ttime_df = dtype_defs[
            control_parameters.EarlyValidFiles.DTYPE_SOV_TIMES]

        # save some memory
        temp_df.drop(['is_virtual', 'trip_km'], axis=1, inplace=True)

        for key, value in dtype_ttime_df.items():
            ttime_df[key] = ttime_df[key].astype(value)

        for key, value in dtype_temp_df.items():
            temp_df[key] = temp_df[key].astype(value)

        validation.logger.info(
            "Dtypes for the trips file are reset to reduce the memory footprint"
        )

        return (temp_df, ttime_df)
コード例 #2
0
ファイル: mode_sampling.py プロジェクト: DuggalM/R-Codes
def run(self, hbw_trip_bin, hbw_stn_bin, hbw_egg_bin, purpose, trips_vehtype):

    # batch requisite json file for DTYPE
    dataFrameDtype = common.dtype_defintions(control_parameters.dirListing,
                                                  EarlyValidFiles.getJSONFileList())

    # lists of binary probabilities from MLOGIT
    hbw_trip_bin = []   # get the list of probability chunks
    hbw_stn_bin = []
    hbw_egg_bin = []

    # With the data batched in it is time to now create access and egress station files for the trip purposes.
    # Need to first split the files by creating an acess and egress index
    access_indx = list(range(0, 14)) + list(range(26, 38)) + list(range(51, 63)) + list(range(75, 77))
    egress_indx = list(range(0, 2)) + list(range(14, 26)) + list(range(38, 51)) + list(range(63, 75))

    for chunk_prob, chunk_station, chunk_egress in zip(hbw_trip_bin, hbw_stn_bin, hbw_egg_bin):

        hbw_prob = pd.DataFrame(np.fromfile(os.path.join(control_parameters.dirListing, chunk_prob),
                                            dtype=[tuple(t) for t in
                                                   dataFrameDtype[EarlyValidFiles.DTYPE_ELEMENTAL_PROB]]))

        hbw_stn = pd.DataFrame(np.fromfile(os.path.join(control_parameters.dirListing, chunk_station),
                                           dtype=[tuple(t) for t in
                                                  dataFrameDtype[EarlyValidFiles.DTYPE_STATION_CHOICE]]))

        hbw_eg_prob = pd.DataFrame(np.fromfile(os.path.join(control_parameters.dirListing, chunk_egress),
                                               dtype=[tuple(t) for t in
                                                      dataFrameDtype[EarlyValidFiles.DTYPE_EGRESS_PROB]]))


        # for work get the columns that represent the access and egress stations as they are mixed in Bill's file
        hbw_st_acc = hbw_stn.iloc[:, access_indx]
        hbw_st_egg = hbw_stn.iloc[:, egress_indx]

        # get the relevant columns to start the process
        hbw_prob_l1 = hbw_prob.iloc[:, 3:]
        hbw_prob_append = hbw_prob.iloc[:, 0:3]

        # The structure of the egress probability file is such that it requires some adjustments. Specifically,
        # the columns need to get appended as a row. Get the first two columns and then drop all the primary mode
        # columns as we only need the access mode and its probabilities in the df for Cheval
        # first_cols = [0, 1]
        s_pos = list(range(2, hbw_eg_prob.shape[1], 3))
        hbw_eg_prob.drop(hbw_eg_prob.columns[s_pos], axis=1, inplace=True)

        # run for the vehicle segments
        for veh_segment in range(0, 4):
            hbw_mode = elemental_mode(hbw_prob_l1, veh_segment, hbw_prob_append, purpose, trips_vehtype)
            hbw_mode = access_egress_station(hbw_st_acc, hbw_st_egg, hbw_mode)
            hbw_mode = egress_prob(hbw_mode, hbw_eg_prob)


            return hbw_mode
コード例 #3
0
    def __init__(self, seed):

        self.seed = seed

        # check if files exist. If not, then stop program
        if not self.validation():
            mprobe_valid.logger.info("validation failed")
            exit(0)
        else:
            mprobe_valid.logger.info("validation success")

        # batch requisite json file for DTYPE. This covers the household and trip dataframes only
        self.dataFrameDtype = common.dtype_defintions(mprobe_valid.dirListing_abm,
                                                      mprobe_valid.EarlyValidFiles_MlogitProbe.getJSONFileList())
コード例 #4
0
ファイル: vehicle_sampling.py プロジェクト: DuggalM/R-Codes
    def __init__(self, seed):

        self.seed = seed

        # check if files exist. If not, then stop program
        if not self.validation():
            common.logger.info("validataion failed")
            exit(0)
        else:
            common.logger.info("validataion success")

        # batch requisite json file for DTYPE
        self.dataFrameDtype = common.dtype_defintions(
            control_parameters.dirListing, EarlyValidFiles.getJSONFileList())
コード例 #5
0
ファイル: vehicle_sampling.py プロジェクト: DuggalM/R-Codes
    def __init__(self, seed):

        self.seed = seed

        # check if files exist. If not, then stop program
        if not self.validation():
            common.logger.info("validataion failed")
            exit(0)
        else:
            common.logger.info("validataion success")

        # batch requisite json file for DTYPE
        self.dataFrameDtype = common.dtype_defintions(control_parameters.dirListing,
                                                  EarlyValidFiles.getJSONFileList())
コード例 #6
0
ファイル: Mlogit_Probe.py プロジェクト: DuggalM/R-Codes
    def __init__(self, seed):

        self.seed = seed

        # check if files exist. If not, then stop program
        if not self.validation():
            mprobe_valid.logger.info("validataion failed")
            exit(0)
        else:
            mprobe_valid.logger.info("validataion success")

        # batch requisite json file for DTYPE
        self.dataFrameDtype = common.dtype_defintions(
            mprobe_valid.dirListing_abm,
            mprobe_valid.EarlyValidFiles_MlogitProbe.getJSONFileList())
コード例 #7
0
ファイル: discretization.py プロジェクト: DuggalM/R-Codes
    def run(self, peak_offpeak, purpose, trips_vehtype):

        #hbw_trip_bin, hbw_stn_bin, hbw_egg_bin =
        # batch requisite json file for DTYPE
        common.logger.info("Batch in the DTYPE definitions")
        dataFrameDtype = common.dtype_defintions(
            control_parameters.dirListing, EarlyValidFiles.getJSONFileList())

        hbw_trip_bin, hbw_stn_bin, hbw_egg_bin = self.getPeak_OffPeakFile(
            peak_offpeak, purpose)

        # dictionary of dfs to collect chunk df

        hbw_mode_allchunks = {}

        # With the data batched in it is time to now create access and egress station files for the trip purposes.
        # Need to first split the files by creating an acess and egress index
        access_indx = list(range(0, 14)) + list(range(26, 38)) + list(
            range(51, 63)) + list(range(75, 77))
        egress_indx = list(range(0, 2)) + list(range(14, 26)) + list(
            range(38, 51)) + list(range(63, 75))

        for chunk_prob, chunk_station, chunk_egress in zip(
                hbw_trip_bin, hbw_stn_bin, hbw_egg_bin):

            hbw_prob = pd.DataFrame(
                np.fromfile(os.path.join(control_parameters.dirListing,
                                         chunk_prob),
                            dtype=[
                                tuple(t) for t in dataFrameDtype[
                                    EarlyValidFiles.DTYPE_ELEMENTAL_PROB]
                            ]))

            hbw_stn = pd.DataFrame(
                np.fromfile(os.path.join(control_parameters.dirListing,
                                         chunk_station),
                            dtype=[
                                tuple(t) for t in dataFrameDtype[
                                    EarlyValidFiles.DTYPE_STATION_CHOICE]
                            ]))

            hbw_eg_prob = pd.DataFrame(
                np.fromfile(os.path.join(control_parameters.dirListing,
                                         chunk_egress),
                            dtype=[
                                tuple(t) for t in dataFrameDtype[
                                    EarlyValidFiles.DTYPE_EGRESS_PROB]
                            ]))

            # for work get the columns that represent the access and egress stations as they are mixed in Bill's file
            hbw_st_acc = hbw_stn.iloc[:, access_indx]
            hbw_st_egg = hbw_stn.iloc[:, egress_indx]

            # get the relevant columns to start the process
            hbw_prob_l1 = hbw_prob.iloc[:, 3:]
            hbw_prob_append = hbw_prob.iloc[:, 0:3]

            # The structure of the egress probability file is such that it requires some adjustments. Specifically,
            # the columns need to get appended as a row. Get the first two columns and then drop all the primary mode
            # columns as we only need the access mode and its probabilities in the df for Cheval
            # first_cols = [0, 1]
            s_pos = list(range(2, hbw_eg_prob.shape[1], 3))
            hbw_eg_prob.drop(hbw_eg_prob.columns[s_pos], axis=1, inplace=True)

            # run for the vehicle segments
            hbw_modes = {}
            common.logger.info(
                "Start running vehicle segments for each chunk %s" %
                chunk_prob)
            for veh_segment in range(0, 4):

                hbw_mode = self.elemental_mode(hbw_prob_l1, veh_segment,
                                               hbw_prob_append, purpose,
                                               trips_vehtype)
                if len(hbw_mode) > 0:

                    hbw_mode = self.access_egress_station(
                        hbw_st_acc, hbw_st_egg, hbw_mode)
                    hbw_mode = self.egress_prob(hbw_mode, hbw_eg_prob)
                    hbw_modes[veh_segment] = hbw_mode

            if len(hbw_modes) > 0:
                hbw_mode_allchunks[chunk_prob] = pd.concat(hbw_modes.values(),
                                                           ignore_index=True)
                return pd.concat(hbw_mode_allchunks.values(),
                                 ignore_index=True)

        # if the probability file and consequently the remaining files are empty then return an empty dataframe
        hbw_mode_allchunks = pd.DataFrame()
        return hbw_mode_allchunks
コード例 #8
0
    def __init__(self):

        # batch requisite json file for DTYPE
        mprobe_valid.logger.info("Get DTYPE definitions for the various files")
        self.dataFrameDtype = common.dtype_defintions(mprobe_valid.dirListing_abm,
                                                      mprobe_valid.EarlyValidFiles_MlogitProbe.getJSONFileList())
コード例 #9
0
ファイル: mode_sampling.py プロジェクト: DuggalM/R-Codes
def run(self, hbw_trip_bin, hbw_stn_bin, hbw_egg_bin, purpose, trips_vehtype):

    # batch requisite json file for DTYPE
    dataFrameDtype = common.dtype_defintions(control_parameters.dirListing,
                                             EarlyValidFiles.getJSONFileList())

    # lists of binary probabilities from MLOGIT
    hbw_trip_bin = []  # get the list of probability chunks
    hbw_stn_bin = []
    hbw_egg_bin = []

    # With the data batched in it is time to now create access and egress station files for the trip purposes.
    # Need to first split the files by creating an acess and egress index
    access_indx = list(range(0, 14)) + list(range(26, 38)) + list(range(
        51, 63)) + list(range(75, 77))
    egress_indx = list(range(0, 2)) + list(range(14, 26)) + list(range(
        38, 51)) + list(range(63, 75))

    for chunk_prob, chunk_station, chunk_egress in zip(hbw_trip_bin,
                                                       hbw_stn_bin,
                                                       hbw_egg_bin):

        hbw_prob = pd.DataFrame(
            np.fromfile(os.path.join(control_parameters.dirListing,
                                     chunk_prob),
                        dtype=[
                            tuple(t) for t in dataFrameDtype[
                                EarlyValidFiles.DTYPE_ELEMENTAL_PROB]
                        ]))

        hbw_stn = pd.DataFrame(
            np.fromfile(os.path.join(control_parameters.dirListing,
                                     chunk_station),
                        dtype=[
                            tuple(t) for t in dataFrameDtype[
                                EarlyValidFiles.DTYPE_STATION_CHOICE]
                        ]))

        hbw_eg_prob = pd.DataFrame(
            np.fromfile(
                os.path.join(control_parameters.dirListing, chunk_egress),
                dtype=[
                    tuple(t)
                    for t in dataFrameDtype[EarlyValidFiles.DTYPE_EGRESS_PROB]
                ]))

        # for work get the columns that represent the access and egress stations as they are mixed in Bill's file
        hbw_st_acc = hbw_stn.iloc[:, access_indx]
        hbw_st_egg = hbw_stn.iloc[:, egress_indx]

        # get the relevant columns to start the process
        hbw_prob_l1 = hbw_prob.iloc[:, 3:]
        hbw_prob_append = hbw_prob.iloc[:, 0:3]

        # The structure of the egress probability file is such that it requires some adjustments. Specifically,
        # the columns need to get appended as a row. Get the first two columns and then drop all the primary mode
        # columns as we only need the access mode and its probabilities in the df for Cheval
        # first_cols = [0, 1]
        s_pos = list(range(2, hbw_eg_prob.shape[1], 3))
        hbw_eg_prob.drop(hbw_eg_prob.columns[s_pos], axis=1, inplace=True)

        # run for the vehicle segments
        for veh_segment in range(0, 4):
            hbw_mode = elemental_mode(hbw_prob_l1, veh_segment,
                                      hbw_prob_append, purpose, trips_vehtype)
            hbw_mode = access_egress_station(hbw_st_acc, hbw_st_egg, hbw_mode)
            hbw_mode = egress_prob(hbw_mode, hbw_eg_prob)

            return hbw_mode
コード例 #10
0
    def run(self, peak_offpeak, purpose, trips_vehtype):


        #hbw_trip_bin, hbw_stn_bin, hbw_egg_bin =
        # batch requisite json file for DTYPE
        common.logger.info("Batch in the DTYPE definitions")
        dataFrameDtype = common.dtype_defintions(control_parameters.dirListing,
                                                      EarlyValidFiles.getJSONFileList())

        hbw_trip_bin, hbw_stn_bin, hbw_egg_bin = self._getPeak_OffPeakFile(peak_offpeak, purpose)

                # dictionary of dfs to collect chunk df

        hbw_mode_allchunks = {}

        # With the data batched in it is time to now create access and egress station files for the trip purposes.
        # Need to first split the files by creating an acess and egress index
        access_indx = list(range(0, 14)) + list(range(26, 38)) + list(range(51, 63)) + list(range(75, 77))
        egress_indx = list(range(0, 2)) + list(range(14, 26)) + list(range(38, 51)) + list(range(63, 75))

        for chunk_prob, chunk_station, chunk_egress in zip(hbw_trip_bin, hbw_stn_bin, hbw_egg_bin):

            hbw_prob = pd.DataFrame(np.fromfile(os.path.join(control_parameters.dirListing, chunk_prob),
                                                dtype=[tuple(t) for t in
                                                       dataFrameDtype[EarlyValidFiles.DTYPE_ELEMENTAL_PROB]]))

            hbw_stn = pd.DataFrame(np.fromfile(os.path.join(control_parameters.dirListing, chunk_station),
                                               dtype=[tuple(t) for t in
                                                      dataFrameDtype[EarlyValidFiles.DTYPE_STATION_CHOICE]]))

            hbw_eg_prob = pd.DataFrame(np.fromfile(os.path.join(control_parameters.dirListing, chunk_egress),
                                                   dtype=[tuple(t) for t in
                                                          dataFrameDtype[EarlyValidFiles.DTYPE_EGRESS_PROB]]))


            # for work get the columns that represent the access and egress stations as they are mixed in Bill's file
            hbw_st_acc = hbw_stn.iloc[:, access_indx]
            hbw_st_egg = hbw_stn.iloc[:, egress_indx]

            # get the relevant columns to start the process
            hbw_prob_l1 = hbw_prob.iloc[:, 3:]
            hbw_prob_append = hbw_prob.iloc[:, 0:3]

            # The structure of the egress probability file is such that it requires some adjustments. Specifically,
            # the columns need to get appended as a row. Get the first two columns and then drop all the primary mode
            # columns as we only need the access mode and its probabilities in the df for Cheval
            # first_cols = [0, 1]
            s_pos = list(range(2, hbw_eg_prob.shape[1], 3))
            hbw_eg_prob.drop(hbw_eg_prob.columns[s_pos], axis=1, inplace=True)

            # run for the vehicle segments
            hbw_modes = {}
            common.logger.info("Start running vehicle segments for each chunk %s" %chunk_prob)
            for veh_segment in range(0, 4):

                hbw_mode = self.elemental_mode(hbw_prob_l1, veh_segment, hbw_prob_append, purpose, trips_vehtype)
                if len(hbw_mode)>0:

                    hbw_mode = self.access_egress_station(hbw_st_acc, hbw_st_egg, hbw_mode)
                    hbw_mode = self.egress_prob(hbw_mode, hbw_eg_prob)
                    hbw_modes[veh_segment] = hbw_mode

            if len(hbw_modes)>0:
                hbw_mode_allchunks[chunk_prob] = pd.concat(hbw_modes.values(), ignore_index=True)
                return pd.concat(hbw_mode_allchunks.values(), ignore_index=True)

        # if the probability file and consequently the remaining files are empty then return an empty dataframe
        hbw_mode_allchunks = pd.DataFrame()
        return hbw_mode_allchunks