def add_string(file, txt): global f global cptFile global cptNbCar,cptNbCarTotal global listFilesToTranslate txt = txt.replace('\\ ', '\\').replace('\\ n ', '\\n').replace('\\n ', '\\n').replace('/ ', '/').strip() txt+= "\n" + SEPARATOR_COPYPASTE + "\n" cptNbCar+= len(txt) cptNbCarTotal+= cptNbCar if(cptNbCar > MAX_CAR_COPY_PASTE): #file too long, new file cptFile+=1 cptNbCar = len(txt) filename = get_filename(OUTFILE, cptFile) filenameTranslated = get_filename(OUTFILE_TRANSLATED, cptFile) #work with this new file f.close() f = open(WORK_DIRECTORY + "/" + filename, "w") listFilesToTranslate.append(filename) #empty translated file fTranslated = open(WORK_DIRECTORY + "/" + filenameTranslated, "w").close() listFilesTranslated.append(filenameTranslated) f.write(txt)
def storeScoreInClient(scoreInformation): filename = common.get_filename('scores_client.json') file = open(filename, 'r') data = json.load(file) file.close() for user in data: if user['userName'] == scoreInformation['userName']: firstTime = False for dif in user['scores']: if dif['difficulty'] == scoreInformation['difficulty']: dif['scores'].append(scoreInformation['score'] ) #dif['scores'] is a list of score if firstTime: dif0 = {'difficulty': 0, 'scores': []} dif1 = {'difficulty': 1, 'scores': []} dif2 = {'difficulty': 2, 'scores': []} diflst = [dif0, dif1, dif2] for dif in diflst: if dif['difficulty'] == scoreInformation['difficulty']: dif['scores'].append(scoreInformation['score']) d = {} d['userName'] = scoreInformation['userName'] d['scores'] = diflst data.append(d) file = open(filename, 'w') json.dump(data, file, ensure_ascii=False) file.close()
def main(): filename = common.get_filename() workbook = common.get_workbook(filename) print(workbook.get_sheet_names()) worksheets = workbook.worksheets assert len(worksheets) == 1, 'support only one worksheet' lines = read_lines_from_worksheet(worksheets[0]) app_data = group_by_line_key(lines) for line in app_data.values()[5]: pprint(line)
def main(): filename = common.get_filename() workbook = common.get_workbook(filename) names = normalize_sheet_names(common.get_sheet_names(workbook)) old_name2new = {} for name in names: old_name2new.setdefault( name['old_name'], '{} {} {} {}'.format(name['code_name'], name['real_name'], name['module'], name['os'])) for worksheet in common.list_worksheets(workbook): common.set_worksheet_name(worksheet, old_name2new[worksheet.title]) common.save_workbook(workbook, filename)
def generate_fold(output_dir, group, input_shape, normalize, output_shape, fold_index, fold_files, language_set): fold_files = sorted(fold_files) fold_files = shuffle(fold_files, random_state=SEED) metadata = [] # create a file array filename = "{group}_data.fold_{index}.npy".format(group=group, index=fold_index) features = np.memmap(os.path.join(output_dir, filename), dtype=DATA_TYPE, mode='w+', shape=(len(fold_files), ) + output_shape) # append data to a file array # append metadata to an array for index, fold_file in enumerate(fold_files): #print('Group {} index {} file: {} '.format(group, index, fold_file)) language_set.add(fold_file.split('_')[0].split('/')[-1]) filename = common.get_filename(fold_file) language = filename.split('_')[0] data = np.load(fold_file)[DATA_KEY] assert data.shape == input_shape assert data.dtype == DATA_TYPE features[index] = normalize(data) metadata.append((language, filename)) assert len(metadata) == len(fold_files) filename = "{group}_metadata.fold_{index}.npy".format(group=group, index=fold_index) print("\tout filename: ", filename) np.save(os.path.join(output_dir, filename), metadata) # flush changes to a disk features.flush() del features
def setScoreListLocal(): global scoreListLocal filename = common.get_filename('scores_client.json') file = open(filename,'r') data = json.load(file) file.close() scorelist = [] for user in data: userName = user['userName'] for score in user['scores']: if score['difficulty'] == difficulty: for i in range(0,len(score['scores'])): scorelist.append((userName,score['scores'][i])) # print 'scorelist:',scorelist def cmp(s): return s[1] sortedlist = sorted(scorelist,key = cmp,reverse = True) toReturn = sortedlist[:10] # print 'toReturn:',toReturn scoreListLocal = toReturn
def aggregation(path): path_files = common.get_path(path) print('Start filtering and aggregation:') for path in tqdm(path_files): df = pd.read_csv(path) filename = common.get_filename(path) logging.debug(f"File {filename} start fitering and aggreagation") df = filter_data(df) # Create date-hour colomn df['date_hour'] = [ datetime(item.year, item.month, item.day, item.hour) for item in df.tpep_pickup_datetime ] # Group by on date_hour and region data_group = df.groupby(['date_hour', 'region']).size().reset_index(name='count') data_group.to_csv('data_aggregation/' + filename + '.csv') logging.debug(f"File {filename} is ready \n")
import time # parameters INFILE = input("Enter input xml strings filename: [default: strings.xml]\n") if not INFILE: INFILE = "strings.xml" OUTFILE = input("Enter output filename base : [default: totranslate.txt]\n") if not OUTFILE: OUTFILE = "totranslate.txt" OUTFILE_TRANSLATED = input("Enter empty translated filename: [default: translated.txt] (useful for translating several languages)\n") if not OUTFILE_TRANSLATED: OUTFILE_TRANSLATED = "translated.txt" create_dir(WORK_DIRECTORY) filename = f = open(WORK_DIRECTORY + "/" + get_filename(OUTFILE), "w") #initialize empty translated file filenameTranslated = get_filename(OUTFILE_TRANSLATED) fTranslated = open(WORK_DIRECTORY + "/" + filenameTranslated, "w").close() listFilesToTranslate.append(filenameTranslated) print("==========================\n\n") # read xml structure tree = ET.parse(INFILE) root = tree.getroot() iElement = 0 for i in range(len(root)): isTranslatable=root[i].get('translatable')
def generate_fold( uids, input_dir, input_ext, output_dir, group, fold_index, input_shape, normalize, output_shape): # pull uid for each a language, gender pair fold_uids = [] for language in LANGUAGES: for gender in GENDERS: fold_uids.append(uids[language][gender].pop()) # find files for given uids fold_files = [] for fold_uid in fold_uids: filename = '*{uid}*{extension}'.format( uid=fold_uid, extension=input_ext) fold_files.extend(glob(os.path.join(input_dir, filename))) fold_files = sorted(fold_files) fold_files = shuffle(fold_files, random_state=SEED) metadata = [] # create a file array filename = "{group}_data.fold{index}.npy".format( group=group, index=fold_index) features = np.memmap( os.path.join(output_dir, filename), dtype=DATA_TYPE, mode='w+', shape=(len(fold_files),) + output_shape) # append data to a file array # append metadata to an array for index, fold_file in enumerate(fold_files): print(fold_file) filename = common.get_filename(fold_file) language = filename.split('_')[0] gender = filename.split('_')[1] data = np.load(fold_file)[DATA_KEY] assert data.shape == input_shape assert data.dtype == DATA_TYPE features[index] = normalize(data) metadata.append((language, gender, filename)) assert len(metadata) == len(fold_files) # store metadata in a file filename = "{group}_metadata.fold{index}.npy".format( group=group, index=fold_index) np.save( os.path.join(output_dir, filename), metadata) # flush changes to a disk features.flush() del features
"Speech3": 13 } return path % (speaker, speaker, smds[smd], repetition) # Get the properties of the recorded excitation and response length = 2**Signal samplingrate = 48000 prp = sumpf.modules.ChannelDataProperties(signal_length=length, samplingrate=samplingrate) sweep_start_frequency, sweep_stop_frequency, sweep_duration = head_specific.get_sweep_properties( sumpf.modules.SilenceGenerator(length=length, samplingrate=samplingrate).GetSignal()) print "Input sweep prop: startfreq-%f, stopfreq-%f, duration-%f" % ( sweep_start_frequency, sweep_stop_frequency, sweep_duration) load = sumpf.modules.SignalFile(filename=common.get_filename( Speaker, "Sweep%i" % Signal, 1), format=sumpf.modules.SignalFile.WAV_FLOAT) split_excitation = sumpf.modules.SplitSignal(channels=[0]) sumpf.connect(load.GetSignal, split_excitation.SetInput) split_response = sumpf.modules.SplitSignal(channels=[1]) # Model for extracting the harmonics of the recorded signal sumpf.connect(load.GetSignal, split_response.SetInput) fft_excitation = sumpf.modules.FourierTransform() sumpf.connect(split_excitation.GetOutput, fft_excitation.SetSignal) fft_response = sumpf.modules.FourierTransform() sumpf.connect(split_response.GetOutput, fft_response.SetSignal) inversion = sumpf.modules.RegularizedSpectrumInversion( start_frequency=max(sweep_start_frequency * 4.0, 20.0), stop_frequency=sweep_stop_frequency / 4.0, transition_length=100,
OUTFILE = input( "Enter output filename base : [default: strings-translated.xml]\n") if not OUTFILE: OUTFILE = "strings-translated.xml" OUTFILE_TRANSLATED = input( "Enter empty translated filename: [default: translated.txt] (useful for translating several languages)\n" ) if not OUTFILE_TRANSLATED: OUTFILE_TRANSLATED = "translated.txt" print("==========================\n\n") #parse all files file-1, file-2, ... tabAllString = [] cptFile = 1 filenameTranslated = get_filename(OUTFILE_TRANSLATED, cptFile) while (os.path.isfile(os.path.join(WORK_DIRECTORY, filenameTranslated))): f = open(os.path.join(WORK_DIRECTORY, filenameTranslated), encoding="utf8") txt = f.read() tab = txt.split(SEPARATOR_COPYPASTE) #if last line is empty (because multiple files) if (tab[len(tab) - 1] == ""): tab.pop() tabAllString.extend(tab) f.close() #next file cptFile += 1 filenameTranslated = get_filename(OUTFILE_TRANSLATED, cptFile)
magnitude = numpy.array(positive.GetMagnitude()) cropped = magnitude[:, int(round(50.0/positive.GetResolution())):int(round(1500.0/positive.GetResolution()))] exp = numpy.exp(cropped) errorexp = numpy.sum(exp) error = numpy.sum(cropped) print "\nerrorexp: ", errorexp print "error : ", error print return errorexp # Get the properties of the recorded excitation and response length = 2**Signal samplingrate = 48000 sweep_start_frequency, sweep_stop_frequency, sweep_duration = head_specific.get_sweep_properties(sumpf.modules.SilenceGenerator(length=length, samplingrate=samplingrate).GetSignal()) print "Input sweep prop: startfreq-%f, stopfreq-%f, duration-%f" %(sweep_start_frequency, sweep_stop_frequency, sweep_duration) load = sumpf.modules.SignalFile(filename=common.get_filename(Speaker, "Sweep%i" % Signal, 1),format=sumpf.modules.SignalFile.WAV_FLOAT) split_excitation = sumpf.modules.SplitSignal(channels=[0]) sumpf.connect(load.GetSignal, split_excitation.SetInput) split_response = sumpf.modules.SplitSignal(channels=[1]) # Model for extracting the harmonics of the recorded signal sumpf.connect(load.GetSignal, split_response.SetInput) fft_excitation = sumpf.modules.FourierTransform() sumpf.connect(split_excitation.GetOutput, fft_excitation.SetSignal) fft_response = sumpf.modules.FourierTransform() sumpf.connect(split_response.GetOutput, fft_response.SetSignal) inversion = sumpf.modules.RegularizedSpectrumInversion(start_frequency=max(sweep_start_frequency*4.0, 20.0),stop_frequency=sweep_stop_frequency/4.0,transition_length=100,epsilon_max=0.1) sumpf.connect(fft_excitation.GetSpectrum,inversion.SetSpectrum) tf_measured = sumpf.modules.MultiplySpectrums() sumpf.connect(inversion.GetOutput, tf_measured.SetInput1) sumpf.connect(fft_response.GetSpectrum,tf_measured.SetInput2)
import common filename = common.get_filename() lines1 = common.read_lines_from_file(filename) import requests import re import sys import unicodedata from bs4 import BeautifulSoup import os from yandex_translate import YandexTranslate translate = YandexTranslate( 'trnsl.1.1.20170222T052338Z.74276f7925a61714.f88a6340cffbdf48e1600c4cfb2f9ba3a22c514f' ) urls = [] values2 = [] keys_ads = [ 'remove', 'ad', 'ads', 'virus', 'advertising', 'pop-up', 'pop-ups', 'Remove', 'Ad', 'Ads', 'Virus', 'Advertising', 'Pop-up', 'Pop-ups', 'remove.', 'ad.', 'ads.', 'virus.', 'advertising.', 'pop-up.', 'pop-ups.', 'Remove.', 'Ad.', 'Ads.', 'Virus.', 'Advertising.', 'Pop-up.', 'Pop-ups.' 'remove,', 'ad,', 'ads,', 'virus,', 'advertising,', 'pop-up,', 'pop-ups,', 'Remove,', 'Ad,', 'Ads,', 'Virus,', 'Advertising,', 'Pop-up,', 'Pop-ups,' ] keys_commerce = [ 'buy', 'shop', 'shopping', 'buyers', 'sellers', 'online-store', 'online-marketplace', 'commerce', 'e-commerce', 'import', 'imports', 'export', 'exports', 'Buy', 'Shop', 'Shopping', 'Buyers', 'Sellers',
import json import common filename = common.get_filename('scores_client.json') file = open(filename, 'w') dif0 = {'difficulty': 0, 'scores': [1]} dif1 = {'difficulty': 1, 'scores': [1]} dif2 = {'difficulty': 2, 'scores': [1]} diflst = [dif0, dif1, dif2] data = {} data['userName'] = '******' data['scores'] = diflst datalst = [] datalst.append(data) # print(data) json.dump(datalst, file, ensure_ascii=False) file.close() file = open(filename, 'r') s = json.load(file) print s[0]['userName']