def init (version = None, command = None, options = None): options = to_seq (options) condition = common.check_init_parameters ('darwin', None, ('version', version)) command = common.get_invocation_command ('darwin', 'g++', command) common.handle_options ('darwin', condition, command, options) gcc.init_link_flags ('darwin', 'darwin', condition)
def init(version=None, command=None, options=None): options = to_seq(options) condition = common.check_init_parameters('darwin', None, ('version', version)) command = common.get_invocation_command('darwin', 'g++', command) common.handle_options('darwin', condition, command, options) gcc.init_link_flags('darwin', 'darwin', condition)
def main(argv): options = handle_options('set', argv) mnist_data = load_dataset() X_train = mnist_data[0].reshape(-1, 28, 28, 1) sfx = gen_sfx_key(('adt', 'nblocks', 'block_size'), options) empty_set_args = {'initializer': tf.random_uniform_initializer} set_adt, set_pdt = gen_set_adt(X_train, options, store_args=options, is_in_args=options, size_args=options, is_empty_args=options, empty_set_args=empty_set_args, nitems=options['nitems'], batch_size=options['batch_size']) graph = tf.get_default_graph() savedir = mk_dir(sfx) path_name = os.path.join( os.environ['DATADIR'], 'graphs', sfx, ) tf.train.SummaryWriter(path_name, graph) load_train_save(options, set_adt, set_pdt, sfx, savedir) push, pop = pdt.call_fns
def main(argv): options = handle_options('map', argv) sfx = gen_sfx_key(('adt', 'nblocks', 'block_size'), options) empty_map_args = {'initializer': tf.random_uniform_initializer} map_adt, map_pdt = gen_map_adt(1, 10, options, dist_args=options, add_dist_args=options, empty_map_args=empty_map_args, batch_size=options['batch_size']) graph = tf.get_default_graph() savedir = mk_dir(sfx) load_train_save(options, map_adt, map_pdt, sfx, savedir) push, pop = map_pdt.call_fns
def main(argv): global adt, pdt, sess, X_train, sfx options = handle_options('stack', argv) mnist_data = load_dataset() X_train = mnist_data[0].reshape(-1, 28, 28, 1) empty_stack_args = {'initializer': tf.random_uniform_initializer} adt, pdt = stack_adt(X_train, options, push_args=options, nitems=options['nitems'], pop_args=options, empty_stack_args=empty_stack_args, batch_size=options['batch_size']) options['dirname'] = gen_sfx_key(('adt', 'nitems'), options) sess = train(adt, pdt, options)
def main(argv): global adt, pdt, sess options = handle_options('number', argv) sfx = gen_sfx_key(('adt', 'template', 'nblocks', 'block_size'), options) zero_args = {'initializer': tf.random_uniform_initializer} adt, pdt = gen_number_adt(options, number_shape=(10, ), succ_args=options, add_args=options, mul_args=options, encode_args=options, decode_args=options, zero_args=zero_args, batch_size=options['batch_size']) savedir = mk_dir(sfx) sess = load_train_save(options, adt, pdt, sfx, savedir)
def main(argv): global queue_adt, queue_pdt, sess, X_train, sfx options = handle_options('queue', argv) mnist_data = load_dataset() X_train = mnist_data[0].reshape(-1, 28, 28, 1) sfx = gen_sfx_key(('adt', 'nblocks', 'block_size'), options) empty_queue_args = {'initializer': tf.random_uniform_initializer} queue_adt, queue_pdt = gen_queue_adt(X_train, options, enqueue_args=options, nitems=options['nitems'], dequeue_args=options, empty_queue_args=empty_queue_args, batch_size=options['batch_size']) savedir = mk_dir(sfx) sess = load_train_save(options, queue_adt, queue_pdt, sfx, savedir)
def main(argv): global adt, pdt, sess, X_train, sfx options = handle_options('eqstack', argv) mnist_data = load_dataset() X_train = mnist_data[0].reshape(-1, 28, 28, 1) #sfx = gen_sfx_key(('adt', 'nblocks', 'block_size'), options) sfx = gen_sfx_key(('adt', 'nitems'), options) empty_eqstack_args = {'initializer': tf.random_uniform_initializer} adt, pdt = eqstack_adt(X_train, options, push_args=options, nitems=options['nitems'], pop_args=options, empty_eqstack_args=empty_eqstack_args, batch_size=options['batch_size']) savedir = mk_dir(sfx) sess = load_train_save(options, adt, pdt, sfx, savedir)
def main(argv): global adt, pdt, sess, X_train, sfx options = handle_options('queue', argv) mnist_data = load_dataset() X_train = mnist_data[0].reshape(-1, 28, 28, 1) #sfx = gen_sfx_key(('adt', 'nblocks', 'block_size'), options) sfx = gen_sfx_key(('adt', 'nitems'), options) empty_queue_args = {'initializer': tf.random_uniform_initializer} adt, pdt = queue_adt(X_train, options, push_args=options, nitems=options['nitems'], pop_args=options, empty_queue_args=empty_queue_args, batch_size=options['batch_size']) datadir = os.path.join(os.environ['DATADIR'], "pdt") savedir = mk_dir(sfx, datadir=datadir) options['sfx'] = sfx sess = train(adt, pdt, options, savedir, sfx)
def main(argv): print("ARGV", argv) options = handle_options('atari', argv) options['dirname'] = gen_sfx_key(('adt', ), options) adt, sess = run(options)
def main(): options = handle_options('scalar_field', argv) run(options)