コード例 #1
0
def main() -> None:
    scenario, planning_problem = load_scenario(
        '../scenarios/DEU_B471-1_1_T-1_mod.xml')
    measurements: Dict[int, float] = {}
    max_steps: int = 21

    plt.figure(figsize=(19.20, 10.80), dpi=100)
    plt.suptitle("Duration for generating states for DEU_B471-1_1_T-1_mod")
    plt.gca().yaxis.set_major_formatter(
        FuncFormatter(lambda x, pos: str(timedelta(seconds=x))))
    plt.xlim([0, max_steps])
    plt.xticks(arange(0, max_steps, 1.0))

    for num_steps in range(max_steps):
        start_time: datetime = datetime.now()
        GenerationHelp.generate_states(scenario,
                                       MyState(planning_problem.initial_state),
                                       num_steps)
        duration: timedelta = datetime.now() - start_time
        print("Generated " + str(num_steps) + " in " + str(duration) + ".")
        measurements[num_steps] = duration.total_seconds()
        plt.ylim([0, max(60.0, duration.total_seconds())])
        plt.plot(measurements.keys(), measurements.values(), 'x',
                 measurements.keys(), measurements.values(), '-')
        plt.pause(0.05)

    plt.show()
コード例 #2
0
def main() -> None:
    scenario, planning_problem = load_scenario(
        'scenarios/DEU_B471-1_1_T-1_mod.xml')

    start_time: datetime = datetime.now()
    ego_vehicle: MyState = MyState(copy(planning_problem.initial_state))
    vehicles: List[VehicleInfo] = [VehicleInfo(ego_vehicle, -1)]

    optimized_scenario(vehicles, 3000, 10, 10,
                       array([10, 9, 8, 7, 6, 5, 4, 3, 2, 1]), scenario,
                       planning_problem)

    print("Optimization in " + str(datetime.now() - start_time))
    print("Optimized velocity: " +
          str(planning_problem.initial_state.velocity))
コード例 #3
0
def main() -> None:
    scenario, planning_problem = load_scenario('scenarios/DEU_B471-1_1_T-1_mod.xml')

    fig = plt.figure(figsize=(25, 10))

    DrawHelp.draw(DrawHelp.convert_to_drawable(scenario))
    DrawHelp.draw(DrawHelp.convert_to_drawable(planning_problem.initial_state))
    # DrawHelp.draw(DrawHelp.convert_to_drawable(planning_problem.goal))

    MyState.set_variable_to(planning_problem.initial_state, 0, 15)

    start_time: datetime = datetime.now()
    valid_converted, num_states_processed \
        = GenerationHelp.generate_states(scenario, MyState(planning_problem.initial_state), num_steps)
    print("Processed " + str(num_states_processed) + " states in " + str(datetime.now() - start_time))

    all_states: List[VehicleInfo] = flatten_dict_values(valid_converted)

    frames: list = []

    for i in range(1, num_steps + 1):
        frame = list(map(lambda v: DrawHelp.draw(v.drawable), filter(lambda v: v.state.state.time_step <= i, all_states)))
        union: MultiPolygon = DrawHelp.union_to_polygon(frame)
        artist: Optional[Artist] = DrawHelp.draw(union)
        if artist is not None:
            if isinstance(artist, list):
                frame.extend(artist)
            else:
                frame.append(artist)
        frames.append(frame)

    print("Drivable area: " + str(union.area))

    plt.gca().set_aspect('equal')
    plt.ylim([35, 60])
    plt.xlim([92, 150])
    ani = ArtistAnimation(fig, frames, interval=500, blit=True, repeat_delay=1000)
    # ani.save("2019-02-16_SimpleDrivableArea_10steps_35ms.mp4", writer="ffmpeg")  # mp4 broken
    plt.show()
コード例 #4
0
def main() -> None:
    scenario, planning_problem = load_scenario('scenarios/DEU_B471-1_1_T-1_mod.xml')

    plt.figure(figsize=(25, 10))

    DrawHelp.draw(DrawHelp.convert_to_drawable(scenario))
    DrawHelp.draw(DrawHelp.convert_to_drawable(planning_problem.initial_state))

    start_time: datetime = datetime.now()
    generation_result: Tuple[Dict[int, List[VehicleInfo]], int] \
        = GenerationHelp.generate_states(scenario, MyState(planning_problem.initial_state), 15)
    # NOTE The value 50 is taken from the commonroad file
    num_states_processed: int = generation_result[1]
    valid_converted: Dict[int, List[VehicleInfo]] = generation_result[0]
    valid_states: List[State] = list(map(lambda v: v.state.state, flatten_dict_values(valid_converted)))
    print("Processed " + str(num_states_processed) + " states in " + str(datetime.now() - start_time))

    # FIXME Properly define goal states
    goal_states: List[State] = []
    for goal in planning_problem.goal.state_list:
        if isinstance(goal.position, Rectangle):
            goal.position = goal.position.center
            goal.orientation = (goal.orientation.end + goal.orientation.start) / 2
        goal.time_step = 16
        goal_states.append(goal)
    search_result: Optional[Tuple[List[State], float]] = dijkstra_search(
        planning_problem.initial_state, goal_states, valid_states)

    if search_result:
        for state in search_result[0]:
            DrawHelp.draw(DrawHelp.convert_to_drawable(state))
    else:
        print("Could not find path to goal")

    plt.gca().set_aspect('equal')
    plt.show()
コード例 #5
0
def main() -> None:
    scenario, planning_problem = load_scenario(
        'scenarios/DEU_B471-1_1_T-1_mod_2.xml')

    num_time_steps: int = 15
    fixed_drawables: List[drawable_types] = []
    for obj in [scenario.lanelet_network, planning_problem.initial_state]:
        fixed_drawables.append(DrawHelp.convert_to_drawable(obj))
    for time_step in range(1, num_time_steps + 1):
        for obs in scenario.static_obstacles:
            fixed_drawables.append(
                DrawHelp.convert_to_drawable(
                    [obs.occupancy_at_time(time_step)]))
        for obs in scenario.dynamic_obstacles:
            fixed_drawables.append(
                DrawHelp.convert_to_drawable(
                    [obs.occupancy_at_time(time_step)]))

    min_velocity: int = 40
    max_velocity: int = 59
    velocity_step_size: float = 0.1
    drivable_areas: Dict[int, float] = {}

    config_file: TextIO = open("config.conf", "w")
    config_file.write("Velocities from " + str(min_velocity) + " to " +
                      str(max_velocity))
    config_file.write("num_time_steps: " + str(num_time_steps))
    config_file.write("time_step_size: " + str(scenario.dt))
    config_file.write("GenerationConfig.max_yaw: " +
                      str(GenerationConfig.max_yaw))
    config_file.write("GenerationConfig.yaw_steps: " +
                      str(GenerationConfig.yaw_steps))
    config_file.write("GenerationConfig.num_threads: " +
                      str(GenerationConfig.num_threads))
    config_file.write("GenerationConfig.position_threshold: " +
                      str(GenerationConfig.position_threshold))
    config_file.write("GenerationConfig.angle_threshold: " +
                      str(GenerationConfig.angle_threshold))
    config_file.write("DrawConfig.car_length: " + str(DrawConfig.car_length))
    config_file.write("DrawConfig.car_width: " + str(DrawConfig.car_width))
    config_file.close()

    overall_time: datetime = datetime.now()
    for velocity in arange(min_velocity, max_velocity + velocity_step_size,
                           velocity_step_size):
        print("Velocity: " + str(velocity))

        # Prepare figure and subplots
        main_fig, (scenario_fig, area_fig) = plt.subplots(nrows=1,
                                                          ncols=2,
                                                          figsize=(19.20,
                                                                   10.80),
                                                          dpi=100)
        main_fig.suptitle("Influence of velocity to drivable area",
                          fontsize=32)
        plt.sca(scenario_fig)

        # Draw artists to be shown always
        for fixed in fixed_drawables:
            DrawHelp.draw(copy(fixed))

        # Generate and draw states resulting from the current velocity of the ego vehicle
        planning_problem.initial_state.velocity = velocity
        start_time: datetime = datetime.now()
        valid_converted, num_states_processed \
            = GenerationHelp.generate_states(scenario, MyState(planning_problem.initial_state), num_time_steps)
        print("Processed " + str(num_states_processed) + " states in " +
              str(datetime.now() - start_time))

        all_states: List[VehicleInfo] = flatten_dict_values(valid_converted)

        for vehicle in all_states:
            DrawHelp.draw(vehicle.drawable)

        union: MultiPolygon = DrawHelp.union_to_polygon(
            list(map(lambda v: v.drawable, all_states)))
        DrawHelp.draw(union)
        drivable_areas[velocity] = union.area

        scenario_fig.set_aspect('equal')
        scenario_fig.set_xlim([100, 200])
        scenario_fig.set_ylim([30, 100])
        scenario_fig.set_xlabel("position [m]")
        scenario_fig.set_ylabel("position [m]")

        # Draw changes of drivable area
        area_fig.set_xlim([min_velocity, max_velocity])
        area_fig.set_ylim([0, max(270.0, max(drivable_areas.values()))])
        area_fig.plot(drivable_areas.keys(), drivable_areas.values(), 'x',
                      drivable_areas.keys(), drivable_areas.values(), '-')
        area_fig.set_xlabel("velocity [m/s]")
        area_fig.set_ylabel("area [m²]")

        # Save the figure
        plt.savefig("out_velocity_" + str(velocity) + ".png")
        # plt.close()  # FIXME Causes EOFErrors

    print("Overall generation took: " + str(datetime.now() - overall_time))