コード例 #1
0
    def train(self):

        lr_scheduer = {1: 1e-3, 2: 2e-3, 3: 1e-3, 60: 1e-4, 120: 1e-5}

        # train
        self.model.train()
        for epoch in range(self.epochs):

            if epoch in lr_scheduer:
                self.set_lr(lr_scheduer[epoch])

            self.train_epoch(epoch)
            file = f"{jobdir}/models/{epoch + 1}.pth"
            common.mkdirs_from_file_path(file)
            torch.save(self.model.module.state_dict(), file)
コード例 #2
0
ファイル: eval.py プロジェクト: happog/DBFace
    # load image and forward
    image = common.imread(file)
    objs = eval_tool.detect_image(model, image, mean, std, 0.01)

    # summary to all_result_dict
    image_pred = []
    for obj in objs:
        image_pred.append(obj.xywh + [obj.score])

    # build all_result_dict
    if key not in all_result_dict:
        all_result_dict[key] = {}

    all_result_dict[key][file_name] = np.array(image_pred)
    log.info("{} / {}".format(i + 1, total_file))

    # write matlab format
    path = f"{jobdir}/matlab_eval_{trial_name}/{key}/{file_name}.txt"
    common.mkdirs_from_file_path(path)

    with open(path, "w") as f:
        f.write(f"/{key}/{file_name}\n{len(image_pred)}\n")

        for item in image_pred:
            f.write("{} {} {} {} {}\n".format(*item))

# eval map of IoU0.5
aps = evaluation.eval_map(all_result_dict, all=False)

log.info("\n" "Easy:      {}\n" "Medium:    {}\n" "Hard:      {}".format(*aps))
コード例 #3
0
class OnnxModel(nn.Module):
    def __init__(self, **kwargs):
        super(OnnxModel, self).__init__()

        self.model = DBFace(**kwargs)
        self.model.load(f"{jobdir}/models/150.pth")

    def forward(self, x):
        center, box, landmark = self.model(x)
        center_sigmoid = torch.sigmoid(center)
        center_maxpool = F.max_pool2d(center_sigmoid,
                                      kernel_size=3,
                                      padding=1,
                                      stride=1)
        box = torch.exp(box)
        return center_sigmoid, center_maxpool, box, landmark


model = OnnxModel(has_landmark=True, wide=64, has_ext=True, upmode="UCBA")
model.eval()
model.cuda()

common.mkdirs_from_file_path(f"{jobdir}/model.onnx")

dummy = torch.zeros((1, 3, 32, 32)).cuda()
torch.onnx.export(model,
                  dummy,
                  f"{jobdir}/model.onnx",
                  output_names=["hm", "pool_hm", "tlrb", "landmark"],
                  opset_version=11)