コード例 #1
0
def detect_daily_work_office(user_id,day):
    # say should be from 1 to 5
    Sections=get_section_db()
    office_candidate=[]
    home=detect_home(user_id)

    if home == 'N/A':
      return 'N/A'

    # print(list_first_pnt)
    for section in Sections.find({"$and":[{"user_id": user_id},{ "section_start_point": { "$ne": None }}]}):
        section_start_pnt=section['section_start_point']
        section_end_pnt=section['section_end_point']
        if Is_date(section['section_start_time'],day)==True:
            # parameter that the distance away from home:
            away_home=400
            if not Is_place(section_start_pnt,home,away_home) and not Is_place(section_end_pnt,home,away_home):
                office_candidate.append(section['track_points'][0])
                office_candidate.append(section['track_points'][-1])
            elif Is_place(section_start_pnt,home,away_home) and not Is_place(section_end_pnt,home,away_home):
                office_candidate.append(section['track_points'][-1])
            elif not Is_place(section_start_pnt,home,away_home) and Is_place(section_end_pnt,home,away_home):
                office_candidate.append(section['track_points'][0])
    if len(office_candidate)>0:
        office_candidate = sorted(office_candidate, key=lambda k: parser.parse(k['time']))
        # print(office_candidate)
        weighted_office_candidate=get_static_pnts(office_candidate)
        office_location=most_common(weighted_office_candidate,200)
        # print(len(office_candidate))
        # print(len(weighted_office_candidate))
        # print(calculate_appearance_rate(office_candidate,office_location))
        # print(calculate_appearance_rate(weighted_office_candidate,office_location))
        return office_location
    else:
        return 'N/A'
コード例 #2
0
def detect_home_2(user_id):
    Sections = get_section_db()
    list_first_pnt = []
    list_home_candidate = []
    for section in Sections.find({
            '$and': [{
                'user_id': user_id
            }, {
                'section_start_point': {
                    '$ne': None
                }
            }]
    }):
        list_first_pnt.append(section['track_points'][0])

    list_home_candidate = get_first_daily_point(list_first_pnt)
    if len(list_home_candidate) == 0:
        return 'N/A'
    list_home_candidate_cood = []
    for pnt in list_home_candidate:
        list_home_candidate_cood.append(pnt['track_location']['coordinates'])

    list_home_candidate_np = np.asarray(list_home_candidate_cood)
    minlat = np.min(list_home_candidate_np[:, 0])
    minlng = np.min(list_home_candidate_np[:, 1])
    list_home_candidate_np_2 = np.zeros((len(list_home_candidate_np), 2))
    list_home_candidate_np_2[:, 0] = (list_home_candidate_np[:, 0] -
                                      minlat) * 89.7
    list_home_candidate_np_2[:, 1] = (list_home_candidate_np[:, 1] -
                                      minlng) * 112.7
    db = DBSCAN(eps=0.2, min_samples=3)
    db_fit = db.fit(list_home_candidate_np_2)
    db_labels = db_fit.labels_
    new_db_labels = db_labels[db_labels != -1]
    if new_db_labels != []:
        frequency = Counter(new_db_labels)
        max_fre = frequency.most_common()[0][1]
        new_location = list_home_candidate_np[db_labels != -1]
        label_unique = np.unique(new_db_labels)
        cluster_center = np.zeros((len(label_unique), 3))
        home_list = []
        for label in label_unique:
            sub_location = new_location[new_db_labels == label]
            if len(sub_location) / max_fre >= 0.3:
                temp_center = np.mean(sub_location, axis=0)
                home_list.append(list(temp_center))

        return home_list
    else:
        return [most_common(list_home_candidate, 200)]
コード例 #3
0
ファイル: home.py プロジェクト: sfwatergit/e-mission-server
def detect_home(user_id):

    Sections=get_section_db()
    list_first_pnt=[]
    list_home_candidate=[]
    for section in Sections.find({"$and":[{"user_id": user_id},{ "section_start_point": { "$ne": None }}]}):
            list_first_pnt.append(section['track_points'][0])
    # print(list_first_pnt)
    list_home_candidate=get_first_daily_point(list_first_pnt)
    # print(type(list_home_candidate))
    # print(type(list_home_candidate[0]))
    if len(list_home_candidate)==0:
        return 'N/A'
    else:
        home_location=most_common(list_home_candidate,500)
        return home_location
コード例 #4
0
ファイル: parser.py プロジェクト: richardpenman/minwrap
def json_to_records(js):
    """Extract records from this json object by finding the leaf nodes and taking the nodes with most common counts as the columns
    """
    records = []
    counter = json_counter(js)
    if counter:
        num_entries = common.most_common(
            [len(values) for values in counter.values()])
        # get the fields with the correct number of entries
        fields = [
            key for key in counter.keys() if len(counter[key]) == num_entries
        ]
        for i in range(num_entries):
            result = dict([(field, counter[field][i]) for field in fields])
            records.append(result)
    return records
コード例 #5
0
ファイル: home_2.py プロジェクト: sfwatergit/e-mission-server
def detect_home_2(user_id):
    Sections = get_section_db()
    list_first_pnt = []
    list_home_candidate = []
    for section in Sections.find({'$and': [{'user_id': user_id}, {'section_start_point': {'$ne': None}}]}):
        list_first_pnt.append(section['track_points'][0])

    list_home_candidate = get_first_daily_point(list_first_pnt)
    if len(list_home_candidate) == 0:
        return 'N/A'
    list_home_candidate_cood = []
    for pnt in list_home_candidate:
        list_home_candidate_cood.append(pnt['track_location']['coordinates'])

    list_home_candidate_np = np.asarray(list_home_candidate_cood)
    minlat = np.min(list_home_candidate_np[:, 1])
    minlng = np.min(list_home_candidate_np[:, 0])
    list_home_candidate_np_2 = np.zeros((len(list_home_candidate_np), 2))
    list_home_candidate_np_2[:, 1] = (list_home_candidate_np[:, 0] - minlat) * 89.7
    list_home_candidate_np_2[:, 0] = (list_home_candidate_np[:, 1] - minlng) * 112.7
    db = DBSCAN(eps=0.2, min_samples=3)
    db_fit = db.fit(list_home_candidate_np_2)
    db_labels = db_fit.labels_
    new_db_labels = db_labels[db_labels != -1]
    if new_db_labels != []:
        frequency = Counter(new_db_labels)
        max_fre = frequency.most_common()[0][1]
        new_location = list_home_candidate_np[db_labels != -1]
        label_unique = np.unique(new_db_labels)
        cluster_center = np.zeros((len(label_unique), 3))
        home_list = []
        for label in label_unique:
            sub_location = new_location[new_db_labels == label]
            if len(sub_location) / max_fre >= 0.3:
                temp_center = np.mean(sub_location, axis=0)
                home_list.append(list(temp_center))

        return home_list
    else:
        return [most_common(list_home_candidate, 200)]