コード例 #1
0
ファイル: segment.py プロジェクト: liaocyintl/WebSegment
    def __crawler(self):
        self.browser.get(self.url)
        self.soup = BeautifulSoup(self.browser.page_source, 'html.parser')
        page_height = self.browser.find_element_by_tag_name(
            "body").rect["height"]
        self.browser.set_window_size(setting.SCREEN_WIDTH, page_height)

        common.prepare_clean_dir(self.output_folder)
        self.browser.save_screenshot(self.output_folder + "/screenshot.png")
コード例 #2
0
def gen_candidate_database():
    from imagefeature import ImageFeature
    print("Candidate Matching Database Generation Start")

    common.prepare_clean_dir(Path("temp/"))

    IF = ImageFeature()

    query_features, query_pathes, orbs = [], [], []
    for img_file in sorted(Path("input/query/").glob("*")):
        query_pathes.append(img_file)
        x = IF.get_feature(img_file)
        query_features.append(x)
        print("Extracting Query Feature", img_file)

    target_class_names, target_features, target_pathes = [], [], []
    for folder in sorted(Path("input/target/").glob("*")):
        class_name = folder.stem
        for img_file in sorted(Path("input/target/%s/" % class_name).glob("*")):
            target_pathes.append(img_file)
            target_class_names.append(class_name)
            feature = IF.get_feature(img_file)
            target_features.append(feature)
            print("Extracting Target Feature", img_file)

    print("Calculating Similarities...")
    sims = cosine_similarity(query_features, target_features)

    candidate_matching_database = {}

    for query_index, row in enumerate(sims):

        query_file = query_pathes[query_index]
        candidate_matching_database[query_file] = {}

        args = np.argsort(row)
        args = args[::-1]

        for arg in args:
            target_path = target_pathes[arg]
            target_class_name = target_class_names[arg]

            if target_class_name not in candidate_matching_database[query_file]:
                candidate_matching_database[query_file][target_class_name] = []

            if len(candidate_matching_database[query_file][target_class_name]) < setting.MAX_NUMBER_ONE_CLASS:
                candidate_matching_database[query_file][target_class_name].append((target_path, row[arg]))

    common.save_pickle(Path("temp/candidate_matching_database.pickle"), candidate_matching_database)

    print("Candidate Matching Database Generation Finish")
コード例 #3
0
ファイル: segment.py プロジェクト: liaocyintl/WebSegment
    def __output_images(self):
        tmp_path = self.output_folder + "/tmp"
        path = self.output_folder + "/images"
        common.prepare_clean_dir(tmp_path)
        common.prepare_clean_dir(path)
        for segment in self.json_data["segments"]:
            for record in segment["records"]:
                for i, image in enumerate(record["images"]):
                    try:
                        file_name = "%s_%s" % (record["record_id"], i)
                        source_file_name_only = tmp_path + "/" + file_name
                        original_extension = image["src"].split('/')[-1].split(
                            '.')[-1].split("?")[0]
                        source_file_name = source_file_name_only + "." + original_extension
                        target_file_name = path + "/" + file_name + "." + setting.OUTPUT_IMAGE_TYPE

                        r = requests.get(image["src"],
                                         stream=True,
                                         headers={'User-agent': 'Mozilla/5.0'})
                        if r.status_code == 200:
                            with open(source_file_name, 'wb') as f:
                                r.raw.decode_content = True
                                shutil.copyfileobj(r.raw, f)
                        else:
                            continue

                        [R, G,
                         B] = [int(a) for a in image["bg_color"].split(",")]
                        im = Image.open(source_file_name).convert('RGBA')
                        bg = Image.new("RGB", im.size, (R, G, B))
                        bg.paste(im, im)
                        im = bg
                        im.save(target_file_name)

                        image["path"] = target_file_name
                    except Exception:
                        pass

        common.save_json(self.output_folder + "/result.json",
                         self.json_data,
                         encoding=setting.OUTPUT_JSON_ENCODING)

        shutil.rmtree(tmp_path)
コード例 #4
0
def match():
    import deepmatching_wrapper as dm
    import cv2

    candidate_matching_database = common.load_pickle(Path("temp/candidate_matching_database.pickle"))

    common.prepare_clean_dir(Path("output/"))
    common.prepare_clean_dir(Path("output/images/"))

    output = {}
    for query_file, candidates in candidate_matching_database.items():
        query_name = Path(query_file).stem
        matching_result = []
        for target_class_name, target_images in candidates.items():
            for i, (target_path, similarity) in enumerate(target_images):
                print("Matching", query_file, "with target image", target_path)

                matches, name1, name2, qw, qh, tw, th, img1, img2 = dm.match(query_file, target_path)
                src_pts = np.float32([[m[0], m[1]] for m in matches])
                dst_pts = np.float32([[m[2], m[3]] for m in matches])

                i = 0
                inlier = []

                M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, setting.RANSAC_THRESHOLD)
                for index, m in enumerate(mask):
                    if np.isclose(m, 1):
                        i += 1
                        inlier.append(matches[index])

                output_name = "%s_%s_%02d.jpg" % (query_name, target_class_name, i)
                dm.draw(img1, img2, inlier, Path("output/images/") / output_name)

                matching_result.append({
                    "class_name": target_class_name,
                    "inlier": len(inlier)
                })
        output[query_file.name] = sorted(matching_result, key=lambda x: x["inlier"], reverse=True)

    common.write_json(Path("output/result.json"), output)