コード例 #1
0
def bi_pruning(q_id, q, k, index, cache):
    IO = 0
    partitions = list(common.partitions(q, index.space, 6))
    region_list = list()
    points = index.points
    vd = index.voronoi_diagram
    for partition in partitions:
        h = MinHeap()
        h.push((0, q_id, q))
        visited = {q_id}
        knn = list()
        while len(h) > 0 and len(knn) < k:
            dist, o, p = h.pop()
            if o != q_id and partition.intersects(p):
                knn.append((o, p, dist))
            for neighbor in vd.neighbors(o):
                if neighbor not in visited:
                    visited.add(neighbor)
                    if neighbor in cache:
                        neighbor_p = cache[neighbor]
                    else:
                        neighbor_p = points[neighbor]
                        cache[neighbor] = neighbor_p
                        IO += 1
                    if partition.intersects(vd.cell(neighbor)):
                        h.push((neighbor_p.distance(q), neighbor, neighbor_p))
        if len(knn) > 0:
            r = knn[-1][2]
            if r > 0:
                region_list.append(
                    common.sector(q, r, partition.angles).buffer(0.01))
    region = reduce(lambda x, y: x.union(y), region_list)
    return region, IO
コード例 #2
0
ファイル: SLICE.py プロジェクト: wanghaoccnu/CSD
def pruning(q_id, q, k, index, partition_num):
    partitions = common.partitions(q, index.space, partition_num)
    sigLists = [[] for i in range(partition_num)]
    upper_arc_radius_heaps = [common.MaxHeap() for i in range(partition_num)]
    shaded_areas = [calculate_shaded_area(partition, partition.r) for partition in partitions]
    h = common.MinHeap()
    IO = 0
    h.push((0, index.root))
    while len(h) > 0:
        e_dist, e = h.pop()
        if may_contains_significant_facility(e, shaded_areas):
            if e.is_data_node:
                pruneSpace(q_id, e, k, partitions, sigLists, upper_arc_radius_heaps, shaded_areas)
            else:
                for child in e.children:
                    h.push((child.geom.distance(q), child))
                    IO += 1

    unpruned_area_list = list()
    for i in range(partition_num):
        r_b = min(upper_arc_radius_heaps[i].first(), partitions[i].r)
        angles = [2 * pi / partition_num * i, 2 * pi / partition_num * (i + 1)]
        if r_b > 0:
            unpruned_area_list.append(common.sector(q, r_b, angles).buffer(0.01))
    unpruned_area = reduce(lambda x, y: x.union(y), unpruned_area_list)

    return sigLists, unpruned_area, IO
コード例 #3
0
ファイル: SLICE.py プロジェクト: wanghaoccnu/CSD
def calculate_shaded_area(partition, bounding_arc_radius):
    if bounding_arc_radius == 0:
        return partition.origin
    if bounding_arc_radius == float('inf'):
        bounding_arc_radius = partition.r
    sector = common.sector(partition.o, bounding_arc_radius * 2, partition.angles)
    m, n = get_M_N(partition, bounding_arc_radius)
    circle_m = common.circle(m, bounding_arc_radius)
    circle_n = common.circle(n, bounding_arc_radius)
    return sector.union(circle_m).union(circle_n)
コード例 #4
0
ファイル: VR.py プロジェクト: wanghaoccnu/CSD
def bi_pruning(q_id, q, k, index, cache):
    IO = 0
    partitions = list(common.partitions(q, index.space, 6))
    region_list = list()
    points = index.points
    vd = index.voronoi_diagram
    visited = {q_id}
    H = common.MinHeap()
    S = [common.MaxHeap() for i in range(6)]
    for neighbor_id in vd.neighbors(q_id):
        if neighbor_id in cache:
            neighbor_p = cache[neighbor_id]
        else:
            neighbor_p = points[neighbor_id]
            cache[neighbor_id] = neighbor_p
            IO += 1
        H.push((1, neighbor_id, neighbor_p))
        visited.add(neighbor_id)
    while len(H) > 0:
        gd_p, p_id, p = H.pop()
        for i in range(6):
            if partitions[i].intersects(p):
                if len(S[i]) < k:
                    dist_bound = float('inf')
                else:
                    dist_bound = S[i].first()[0]
                dist_p = p.distance(q)
                if gd_p <= k and dist_p < dist_bound:
                    S[i].push((dist_p, p_id, p))
                    for neighbor_id in vd.neighbors(p_id):
                        if neighbor_id not in visited:
                            if neighbor_id in cache:
                                neighbor_p = cache[neighbor_id]
                            else:
                                neighbor_p = points[neighbor_id]
                                cache[neighbor_id] = neighbor_p
                                IO += 1
                            gd_neighbor = gd_p + 1
                            visited.add(neighbor_id)
                            H.push((gd_neighbor, neighbor_id, neighbor_p))
    for i in range(6):
        s = sorted(S[i])
        if len(s) >= k:
            r = s[k - 1][0]
        elif len(s) > 0:
            r = s[-1][0]
        else:
            r = 0
        if r > 0:
            region_list.append(
                common.sector(q, r, partitions[i].angles).buffer(0.01))
    region = reduce(lambda x, y: x.union(y), region_list)
    return region, IO
コード例 #5
0
ファイル: newUtil.py プロジェクト: baohudongwu/MarketPrice
def hindenburgomen():
    tcode={}
    codenumber=[]
    xcode,k,X,Y=[],[],[],[]
    Rsq=pd.DataFrame()

    index='000001'#上证指数
    sectorcode="2000032255"#上证A股成分
    startdate='20160101'#起始日期
    enddate='20161231'#截止日期
    #后推30日获取

    Ndate=c.getdate(enddate,30)
    enddateN30=Ndate.Dates[0]
    date=c.tradedates(startdate,enddateN30)

    #获取上证A股的板块成分,每日新增的代码也获取对应的收盘价数据
    for i in range(len(date.Dates)-30):
        if(i==0):
           code = c.sector(sectorcode, date.Dates[i])
           data=c.csd(code.Codes,"CLOSE",startdate,enddateN30,'Period=1,ispandas=1')
           codenumber=code.Codes
           code2=code
        else:
           code1=c.sector(sectorcode, date.Dates[i])
           addcode = [i for i in code1.Codes if i not in code2.Codes]
           if(len(addcode)!=0):
               adddata=c.csd(addcode,"CLOSE",startdate,enddateN30,'Period=1,ispandas=1')
               data=data.append(adddata)
               codenumber=codenumber+addcode
           code2 = code1
    data.to_csv('data.csv')
    data=pd.read_csv('data.csv')
    data=data.set_index('CODES')
    #获取对比指数收盘价数据
    indexdata=c.csd(index,"CLOSE",startdate,enddateN30,'Period=1,ispandas=1,rowindex=1')
    #板块成分和指数线性回归,并计算30日间隔的Rsq系数
    for i in range(len(codenumber)):
             for x, y in zip(data.ix[codenumber[i],"CLOSE"], indexdata["CLOSE"]):
                  X.append([float(x)])
                  Y.append(float(y))
             for j in range(0,len(Y)):
                   try:
                    regr = linear_model.LinearRegression()
                    regr=regr.fit(X[j:j+30], Y[j:j+30])
                    regr=regr.score(X[j:j + 30], Y[j:j + 30])
                    xcode.append(regr)
                    if(j+30>=len(Y)-1):
                      break
                   except:
                      xcode.append(0)
             tcode[codenumber[i]]=xcode
             xcode=[]
             X=[]
             Y=[]
    Rsq=pd.DataFrame(tcode)
    Rsq.to_csv('rsq.csv',index=None)
    Rsq=pd.read_csv('rsq.csv')
    #求每日Rsq系数的均值
    FORMAT ='%d/%02d/%02d'
    Rsq=Rsq.T
    mean=pd.DataFrame(Rsq.mean(),columns=['MEAN'])
    for i in range(Rsq.columns.size):
      mean['MEAN']=mean['MEAN']*len(Rsq)/len(Rsq[Rsq[i]!=0.0])
    mean['DATE']=date.Dates[30:]

    #求每日Rsq系数的均值间隔3日变动幅度超过30%的日期进行标记
    for i in range(len(mean)-33):
        x=(mean.ix[i,'MEAN']-mean.ix[i+3,'MEAN'])/mean.ix[i,'MEAN']
        if (x >0.3 or x<-0.3):
            k.append(mean.ix[i + 3, 'DATE'])
            list1=mean.ix[i + 3, 'DATE'].split("/")
            list1=FORMAT % (int(list1[0]), int(list1[1]), int(list1[2]))
            indexdata.ix[indexdata['DATES']==list1, 'MARKER'] = 1
        else:
            pass
    #绘制指数收盘价
    indexdata=indexdata.set_index('DATES')
    indexdata.index=pd.to_datetime(indexdata.index)
    #标记吉登堡凶兆所标记的时间点
    for i in range(0,len(indexdata.ix[indexdata["MARKER"]==1,"CLOSE"])):
       plt.scatter(pd.to_datetime((indexdata.ix[indexdata["MARKER"]==1,"CLOSE"]).index)[i],indexdata.ix[indexdata["MARKER"]==1,"CLOSE"][i], color='red',marker='o')
    indexdata['CLOSE'].plot(figsize=(10,8))
    plt.xlabel("date")
    plt.ylabel("close")
    plt.title(u"000001.SH")
    plt.show()