コード例 #1
0
def gs_norm(f, g, q):
    """Compute the squared Gram-Schmidt norm of the NTRU matrix generated by f, g.

    This matrix is [[g, - f], [G, - F]].
    This algorithm is equivalent to line 9 of algorithm 5 (NTRUGen).
    """
    sqnorm_fg = sqnorm([f, g])
    ffgg = add(mul(f, adj(f)), mul(g, adj(g)))
    Ft = div(adj(g), ffgg)
    Gt = div(adj(f), ffgg)
    sqnorm_FG = (q**2) * sqnorm([Ft, Gt])
    return max(sqnorm_fg, sqnorm_FG)
コード例 #2
0
def test_ffnp(d, m, iterations):
    """Test ffnp.

    This functions check that:
    1. the two versions (coefficient and FFT embeddings) of ffnp are consistent
    2. ffnp output lattice vectors close to the targets.
    """
    q = q_12289
    A, B, inv_B, sqr_gsnorm = module_ntru_gen(d, q, m)
    G0 = gram(B)
    G0_fft = [[fft(elt) for elt in row] for row in G0]
    T = ffldl(G0)
    T_fft = ffldl_fft(G0_fft)
    th_bound = (m + 1) * d * sqr_gsnorm / 4.

    mn = 0
    for i in range(iterations):
        t = [[random() for coef in range(d)] for poly in range(m + 1)]
        t_fft = [fft(elt) for elt in t]

        z = ffnp(t, T)
        z_fft = ffnp_fft(t_fft, T_fft)

        zb = [ifft(elt) for elt in z_fft]
        zb = [[round(coef) for coef in elt] for elt in zb]
        if z != zb:
            print("ffnp and ffnp_fft are not consistent")
            return False
        diff = [sub(t[i], z[i]) for i in range(m + 1)]
        diffB = vecmatmul(diff, B)
        norm_zmc = int(round(sqnorm(diffB)))
        mn = max(mn, norm_zmc)

    if mn > th_bound:
        print("z = {z}".format(z=z))
        print("t = {t}".format(t=t))
        print("mn = {mn}".format(mn=mn))
        print("th_bound = {th_bound}".format(th_bound=th_bound))
        print("sqr_gsnorm = {sqr_gsnorm}".format(sqr_gsnorm=sqr_gsnorm))
        print("Warning: the algorithm outputs vectors longer than expected")
        return False
    else:
        return True
コード例 #3
0
def test_ffnp(n, iterations):
    """Test ffnp.

    This functions check that:
    1. the two versions (coefficient and FFT embeddings) of ffnp are consistent
    2. ffnp output lattice vectors close to the targets.
    """
    f = sign_KAT[n][0]["f"]
    g = sign_KAT[n][0]["g"]
    F = sign_KAT[n][0]["F"]
    G = sign_KAT[n][0]["G"]
    B = [[g, neg(f)], [G, neg(F)]]
    G0 = gram(B)
    G0_fft = [[fft(elt) for elt in row] for row in G0]
    T = ffldl(G0)
    T_fft = ffldl_fft(G0_fft)

    sqgsnorm = gs_norm(f, g, q)
    m = 0
    for i in range(iterations):
        t = [[random() for i in range(n)], [random() for i in range(n)]]
        t_fft = [fft(elt) for elt in t]

        z = ffnp(t, T)
        z_fft = ffnp_fft(t_fft, T_fft)

        zb = [ifft(elt) for elt in z_fft]
        zb = [[round(coef) for coef in elt] for elt in zb]
        if z != zb:
            print("ffnp and ffnp_fft are not consistent")
            return False
        diff = [sub(t[0], z[0]), sub(t[1], z[1])]
        diffB = vecmatmul(diff, B)
        norm_zmc = int(round(sqnorm(diffB)))
        m = max(m, norm_zmc)
    th_bound = (n / 4.) * sqgsnorm
    if m > th_bound:
        print("Warning: ffnp does not output vectors as short as expected")
        return False
    else:
        return True