def SLCT(para,dataPath,data,curData): util.config(para) startTime = time.time() # start timing # load the dataset loglines = dataloader.load(para) # log template extraction slct.extract(loglines, para) timeInterval=time.time() - startTime print('execution time is: %f (precision calculation,data preprocessing and templates splitting not counted)'%(timeInterval)) tempParameter=tempPara(dataname=data[curData]+'/',savePath=dataPath) tempProcess(tempParameter) return timeInterval
# parameter config area para = {'dataPath': '../data/', # data path 'dataName': 'Orangelab_sense_temperature', # set the dataset name 'outPath': 'result/', # output path for results 'metrics': ['MAE', 'NMAE', 'RMSE', 'MRE', 'NNPRE', 'SNR'], # evaluation metrics 'samplingRate': np.arange(0.05, 0.96, 0.05), # sampling rate 'rounds': 1, # how many runs to perform at each sampling rate 'lmbda': 1e-5, # sparisty regularization parameter 'trainingPeriod': 33, # training time periods 'saveTimeInfo': False, # whether to keep track of the running time 'saveLog': False, # whether to save log into file 'debugMode': False, #whether to record the debug info 'parallelMode': False # whether to leverage multiprocessing for speedup } startTime = time.time() # start timing utils.setConfig(para) # set configuration logger.info('==============================================') logger.info('CS-PCA: [Quer et al., TWC\'2012]') # load the dataset dataMatrix = dataloader.load(para) # evaluate compressive monitoring algorithm evaluator.execute(dataMatrix, para) logger.info('All done. Elaspsed time: ' + utils.formatElapsedTime(time.time() - startTime)) # end timing logger.info('==============================================')
'outPath': 'result/', 'metrics': ['MAE', 'NMAE', 'RMSE', 'MRE', 'NPRE'], # delete where appropriate 'density': np.arange(0.05, 0.31, 0.05), # matrix density 'rounds': 20, # how many runs are performed at each matrix density 'dimension': 10, # dimenisionality of the latent factors 'etaInit': 0.001, # inital learning rate. We use line search # to find the best eta at each iteration 'lambda': 200, # regularization parameter 'maxIter': 300, # the max iterations 'saveTimeInfo': False, # whether to keep track of the running time 'saveLog': True, # whether to save log into file 'debugMode': False, # whether to record the debug info 'parallelMode': True # whether to leverage multiprocessing for speedup } startTime = time.time() # start timing utils.setConfig(para) # set configuration logger.info('==============================================') logger.info('PMF: Probabilistic Matrix Factorization') # load the dataset dataTensor = dataloader.load(para) # evaluate QoS prediction algorithm evaluator.execute(dataTensor, para) logger.info('All done. Elaspsed time: ' + utils.formatElapsedTime(time.time() - startTime)) # end timing logger.info('==============================================')
'dataPath': '../../../data/', 'dataName': 'dataset#2', 'dataType': 'rt', # set the dataType as 'rt' or 'tp' 'outPath': 'result/', 'metrics': ['MAE', 'NMAE', 'RMSE', 'MRE', 'NPRE'], # delete where appropriate 'density': np.arange(0.05, 0.31, 0.05), # matrix density 'rounds': 20, # how many runs are performed at each matrix density 'topK': 10, # the parameter of TopK similar users or services 'lambda': 0.8, # the combination coefficient of UPCC and IPCC 'saveTimeInfo': False, # whether to keep track of the running time 'saveLog': True, # whether to save log into file 'debugMode': False, # whether to record the debug info 'parallelMode': True # whether to leverage multiprocessing for speedup } startTime = time.time() # start timing utils.setConfig(para) # set configuration logger.info('==============================================') logger.info('Approach: [UPCC, IPCC, UIPCC][TSC 2011]') # load the dataset dataTensor = dataloader.load(para) # evaluate QoS prediction algorithm evaluator.execute(dataTensor, para) logger.info('All done. Elaspsed time: ' + utils.formatElapsedTime(time.time() - startTime)) # end timing logger.info('==============================================')
'outPath': 'result/', 'metrics': ['NDCG', 'Precision'], # delete where appropriate 'metric_parameter': [1, 5, 10, 50, 100], 'density': [0.01, 0.1, 0.3], # matrix density 'rounds': 10, # how many runs are performed at each matrix density 'dimension': 10, # dimenisionality of the latent factors 'etaInit': 0.01, # inital learning rate. We use line search # to find the best eta at each iteration 'lambda': 0.1, # regularization parameter 'maxIter': 300, # the max iterations 'saveTimeInfo': False, # whether to keep track of the running time 'saveLog': True, # whether to save log into file 'debugMode': False, # whether to record the debug info 'parallelMode': True # whether to leverage multiprocessing for speedup } startTime = time.time() # start timing utils.setConfig(para) # set configuration logger.info('==============================================') logger.info('PMF: Probabilistic Matrix Factorization') # load the dataset dataMatrix = dataloader.load(para) # evaluate QoS prediction algorithm evaluator.execute(dataMatrix, para) logger.info('All done. Elaspsed time: ' + utils.formatElapsedTime(time.time() - startTime)) # end timing logger.info('==============================================')
import os, sys, time sys.path.append('../../') sys.path.append('../') from logparser import slct from commons.util import logger from commons import util from commons import dataloader ######################################################### # config area # para = {'dataPath': '../data/', # data path 'dataName': 'redlug.com', # set the dataset name 'outPath': 'result/', # output path for results 'supportThreshold': 1, # set support threshold 'saveLog': True, # whether to save log into file } util.config(para) ######################################################### startTime = time.time() # start timing # load the dataset loglines = dataloader.load(para) # log template extraction slct.extract(loglines, para) logger.info('All done. Elaspsed time: ' + util.formatElapsedTime(time.time() - startTime)) # end timing logger.info('==============================================')