コード例 #1
0
ファイル: transforms.py プロジェクト: researchmm/soho
    def _resize_img(self, results):
        if self.keep_ratio:
            img1, scale_factor1 = commons.imrescale(results['img1'],
                                                    results['scale'],
                                                    return_scale=True)
            img2, scale_factor2 = commons.imrescale(results['img2'],
                                                    results['scale'],
                                                    return_scale=True)

        else:
            img1, w_scale, h_scale = commons.imresize(results['img1'],
                                                      results['scale'],
                                                      return_scale=True)
            scale_factor1 = np.array([w_scale, h_scale, w_scale, h_scale],
                                     dtype=np.float32)
            img2, w_scale, h_scale = commons.imresize(results['img2'],
                                                      results['scale'],
                                                      return_scale=True)
            scale_factor2 = np.array([w_scale, h_scale, w_scale, h_scale],
                                     dtype=np.float32)

        results['img1'] = img1
        results['img2'] = img2
        results['img1_shape'] = img1.shape
        results['img2_shape'] = img2.shape
        results['pad1_shape'] = img1.shape  # in case that there is no padding
        results['pad2_shape'] = img2.shape  # in case that there is no padding
        results['scale_factor1'] = scale_factor1
        results['scale_factor2'] = scale_factor2
        results['keep_ratio'] = self.keep_ratio
コード例 #2
0
ファイル: transforms.py プロジェクト: researchmm/soho
    def _resize_img(self, results):
        results["img2"] = results['img'].copy()
        flag = random.random()
        donw_up_stage = random.randint(0, self.max_stage)
        if flag < 0.5:
            for i in range(donw_up_stage):
                results["img2"] = cv2.pyrDown(results["img2"])
            for i in range(donw_up_stage):
                results["img2"] = cv2.pyrUp(results["img2"])

            results['img2'] = cv2.resize(
                results['img2'],
                (results['img'].shape[1], results['img'].shape[0]))
        else:
            for i in range(donw_up_stage):
                results["img"] = cv2.pyrDown(results["img"])
            for i in range(donw_up_stage):
                results["img"] = cv2.pyrUp(results["img"])

            results['img'] = cv2.resize(
                results['img'],
                (results['img2'].shape[1], results['img2'].shape[0]))

        assert results['img2'].shape[0] == results['img'].shape[0] and \
               results['img2'].shape[1] == results['img'].shape[1]
        if self.keep_ratio:
            img1, scale_factor1 = commons.imrescale(results['img'],
                                                    results['scale'],
                                                    return_scale=True)
            img2, scale_factor2 = commons.imrescale(results['img2'],
                                                    results['scale'],
                                                    return_scale=True)

        else:
            img1, w_scale, h_scale = commons.imresize(results['img'],
                                                      results['scale'],
                                                      return_scale=True)
            scale_factor1 = np.array([w_scale, h_scale, w_scale, h_scale],
                                     dtype=np.float32)
            img2, w_scale, h_scale = commons.imresize(results['img2'],
                                                      results['scale'],
                                                      return_scale=True)
            scale_factor2 = np.array([w_scale, h_scale, w_scale, h_scale],
                                     dtype=np.float32)

        results['img1'] = img1
        results['img2'] = img2
        results['img1_shape'] = img1.shape
        results['img2_shape'] = img2.shape
        results['pad1_shape'] = img1.shape  # in case that there is no padding
        results['pad2_shape'] = img2.shape  # in case that there is no padding
        results['scale_factor1'] = scale_factor1
        results['scale_factor2'] = scale_factor2
        results['keep_ratio'] = self.keep_ratio
コード例 #3
0
ファイル: transforms.py プロジェクト: researchmm/soho
 def __call__(self, results):
     if results['keep_ratio']:
         gt_seg = commons.imrescale(results['gt_semantic_seg'],
                                    results['scale'],
                                    interpolation='nearest')
     else:
         gt_seg = commons.imresize(results['gt_semantic_seg'],
                                   results['scale'],
                                   interpolation='nearest')
     if results['flip']:
         gt_seg = commons.imflip(gt_seg)
     if gt_seg.shape != results['pad_shape']:
         gt_seg = commons.impad(gt_seg, results['pad_shape'][:2])
     if self.scale_factor != 1:
         gt_seg = commons.imrescale(gt_seg,
                                    self.scale_factor,
                                    interpolation='nearest')
     results['gt_semantic_seg'] = gt_seg
     return results
コード例 #4
0
ファイル: transforms.py プロジェクト: researchmm/soho
 def _resize_img(self, results):
     if self.keep_ratio:
         img, scale_factor = commons.imrescale(results['img'],
                                               results['scale'],
                                               return_scale=True)
     else:
         img, w_scale, h_scale = commons.imresize(results['img'],
                                                  results['scale'],
                                                  return_scale=True)
         scale_factor = np.array([w_scale, h_scale, w_scale, h_scale],
                                 dtype=np.float32)
     results['img'] = img
     results['img_shape'] = img.shape
     results['pad_shape'] = img.shape  # in case that there is no padding
     results['scale_factor'] = scale_factor
     results['keep_ratio'] = self.keep_ratio