def plotting(data1, data2, config_file, smash_code_version, output_folder): quantities = data1.quantities.union(data2.quantities) pdglist = data1.pdglist.union(data2.pdglist) pdglist_abs = np.unique(np.abs(np.array(list(pdglist)))) colliding_systems = data1.colliding_systems.union(data2.colliding_systems) colliding_systems_list = list(colliding_systems) energies = sorted(list(data1.energies.union(data2.energies))) for quantity in quantities: if ('spectra' in quantity): continue collected_results_pp = [[], [], []] collected_results_AuAuPbPb = [[], [], []] for pdg_abs in pdglist_abs: # Sigma0 is added to Lambda plots if (pdg_abs == 3212): continue # We do not want the Deuteron plots to be displayed, because SMASH # needs to be modified for useful results (cross section cut off) if (pdg_abs == 1000010020): continue pdg_one_sort = [] if (pdg_abs in pdglist): pdg_one_sort.append(pdg_abs) if (-pdg_abs in pdglist): pdg_one_sort.append(-pdg_abs) for pdg in pdg_one_sort: for colliding_system in colliding_systems: if (pdg == pdg_abs): plot_format = '-' plot_label = colliding_system exp_fmt = 'o' else: plot_format = '--' plot_label = '' exp_fmt = 's' if (colliding_system == 'pp'): linewidth = 5 plot_color = 'midnightblue' else: linewidth = 5 plot_color = 'darkred' if data1.is_in_dict([quantity, colliding_system, pdg]): theory_vs_energy = data1.the_dict[quantity][ colliding_system][pdg] x, y = zip(*sorted(theory_vs_energy.iteritems())) plt.plot(x, y, plot_format, label=plot_label, color=plot_color, lw=linewidth) # store results in list to later save it for future comparison if (colliding_system == 'pp'): collected_results_pp[0].append(pdg) if (collected_results_pp[1] == []): collected_results_pp[1].append(x) collected_results_pp[2].append(y) if (colliding_system == 'AuAu/PbPb'): collected_results_AuAuPbPb[0].append(pdg) if (collected_results_AuAuPbPb[1] == []): collected_results_AuAuPbPb[1].append(x) collected_results_AuAuPbPb[2].append(y) if args.comp_prev_version: import comp_to_prev_version as cpv # read and plot results from previous version filename_prev = quantity + '_' + colliding_system.replace( '/', '') prev_SMASH_version = cpv.plot_previous_results( 'energy_scan', '', filename_prev + '.txt', plot_color=plot_color, pdg=pdg, plot_style=plot_format) if data2.is_in_dict([quantity, colliding_system, pdg]): exp_vs_energy = data2.the_dict[quantity][ colliding_system][pdg] x_exp, y_exp = zip(*sorted(exp_vs_energy.iteritems())) y_exp_values, y_exp_errors = zip(*y_exp) plt.errorbar(x_exp, y_exp_values, yerr = y_exp_errors, fmt = exp_fmt,\ color = plot_color, elinewidth = 2, markeredgewidth = 0) if args.comp_prev_version: #dummy, for combined legend entry of previous results. plt.plot(1, 0.0, linestyle='-', linewidth=10, zorder=1, alpha=0.2, color='dimgrey', label=prev_SMASH_version) plt.xlabel('$\sqrt{s_{NN}} [GeV]$') plt.xscale('log') if (quantity in ['total_multiplicity', 'midrapidity_yield']): if np.all(y == 0): print 'No positive values encountered in ' + str(quantity) + ' for ' + str(pdg) +\ '. Cannot log-scale the y axis, scale will be linear.' else: plt.yscale('log', nonposy='clip') hadron_name = sb.pdg_to_name(pdg_abs, config_file).decode("utf-8") antihadron_name = sb.pdg_to_name(-pdg_abs, config_file).decode("utf-8") plot_title = hadron_name if not pdg_abs in [111, 333]: # antiparticle of itself plot_title += ' (' + antihadron_name + ' dashed, squares)' title_dict = { 'total_multiplicity': ' $4\pi$ multiplicity', 'midrapidity_yield': ' $dN/dy|_{y = 0}$', 'meanmt0_midrapidity': ' $<m_{T}>|_{y = 0}$, $m_{T} = \sqrt{p_T^2 + m^2} - m$', 'meanpt_midrapidity': ' $<p_{T}>|_{y = 0}$' } plt.title(plot_title) plt.ylabel(title_dict[quantity]) plt.legend() plt.figtext(0.8, 0.94, " SMASH code: %s\n SMASH analysis: %s" % \ (smash_code_version, sb.analysis_version_string()), \ color = "gray", fontsize = 10) plt.savefig(output_folder + '/' + quantity + str(pdg_abs) + '.pdf') plt.clf() # Save results plotted above for future comparison filename_AuAuPbPb = quantity + '_' + 'AuAuPbPb' + '.txt' filename_pp = quantity + '_' + 'pp' + '.txt' store_results(output_folder + '/' + filename_AuAuPbPb, collected_results_AuAuPbPb, smash_code_version, quantity) store_results(output_folder + '/' + filename_pp, collected_results_pp, smash_code_version, quantity) # Plotting spectra, only those, where some data is present for quantity in quantities: if (quantity not in ['yspectra', 'mtspectra', 'ptspectra', 'v2spectra']): continue if (quantity == 'v2spectra' and not args.with_v2): continue for pdg in pdglist: if (abs(pdg) == 3212): continue if (abs(pdg) == 1000010020): continue collected_results_pp = [[], [], []] collected_results_AuAuPbPb = [[], [], []] for colliding_system in colliding_systems: #if not data2.is_in_dict([quantity, colliding_system, pdg]): continue #if not data1.is_in_dict([quantity, colliding_system, pdg]): continue # colors list for plotting col = cycle(colours) # to scale curves in mT and pT spectra by powers of 10 -> readability scaling_counter = -1 for element, energy in enumerate(energies): collider = determine_collider(energy) in_theory = data1.is_in_dict( [quantity, colliding_system, pdg, energy]) in_experiment = data2.is_in_dict( [quantity, colliding_system, pdg, energy]) #if (not in_experiment): continue if (in_experiment and not in_theory): print energy, colliding_system, pdg, in_theory, in_experiment, \ ': there is experimental data, but no SMASH calculation!' if (in_theory): plot_color = next(col) bin_edges, y = data1.the_dict[quantity][ colliding_system][pdg][energy] bin_edges = np.array(bin_edges) bin_width = bin_edges[1:] - bin_edges[:-1] x = 0.5 * (bin_edges[1:] + bin_edges[:-1]) y = np.array(y) # dN/dy if (quantity == 'yspectra'): y /= bin_width plt.plot(x, y, '-', lw=4, color=plot_color, label=str(energy)) # dN/dmT pole_masses = { 111: 0.138, 211: 0.138, 321: 0.495, 2212: 0.938, 3122: 1.116, 3312: 1.321, 3334: 1.672, 1000010020: 1.8756, 3212: 1.189 } m0 = pole_masses[abs(pdg)] if (quantity == 'mtspectra'): scaling_counter += 1 y /= ((x + m0) * bin_width) * ( 2.0 * data1.midrapidity_cut ) # factor 2 because [-y_cut; y_cut] if np.all( y == 0 ): # rescale y-axis to be linear if mtspectra of current energy are 0, but those plt.yscale( 'linear' ) # of the previous energy were not, so that the scale was already set to log scale. plt.plot(x, y * 10**scaling_counter, '-', lw=4, color=plot_color, label=str(energy) + r' $\times \ $10$^{\mathsf{' + str(scaling_counter) + r'}}$') # dN/dpT if (quantity == 'ptspectra'): scaling_counter += 1 y /= (bin_width * x) * ( 2.0 * data1.midrapidity_cut ) # factor 2 because [-y_cut; y_cut] if np.all( y == 0 ): # rescale y-axis to be linear if ptspectra of current energy are 0, but those plt.yscale( 'linear' ) # of the previous energy were not, so that the scale was already set to log scale. plt.plot(x, y * 10**scaling_counter, '-', lw=4, color=plot_color, label=str(energy) + r' $\times \ $10$^{\mathsf{' + str(scaling_counter) + r'}}$') # v2 if (quantity == 'v2spectra'): y /= (bin_width) * ( 2.0 * data1.midrapidity_cut ) # factor 2 because [-y_cut; y_cut] plt.plot(x, y, '-', lw=4, color=plot_color, label=str(energy)) # store results in list to later save for future comparison if (colliding_system == 'pp'): collected_results_pp[0].append(energy) if (collected_results_pp[1] == []): collected_results_pp[1].append(x) collected_results_pp[2].append(y) if (colliding_system == 'AuAu/PbPb'): collected_results_AuAuPbPb[0].append(energy) if (collected_results_AuAuPbPb[1] == []): collected_results_AuAuPbPb[1].append(x) collected_results_AuAuPbPb[2].append(y) # read and plot results from previous version if args.comp_prev_version and quantity != 'v2spectra': #v2 is not regularly run, old results are neither produced nor stored filename_prev = quantity + '_' + colliding_system.replace( '/', '') + '_' + str(pdg) prev_SMASH_version = cpv.plot_previous_results( 'energy_scan', '', filename_prev + '.txt', energy=energy, plot_color=plot_color, scaling_counter=scaling_counter) if (in_experiment): x, y, y_err = data2.the_dict[quantity][ colliding_system][pdg][energy] if (quantity == 'mtspectra'): plt.errorbar(x, y * 10**scaling_counter, yerr=y_err, fmt='o', color=plot_color) elif (quantity == 'ptspectra'): plt.errorbar(x, y * 10**scaling_counter, yerr=y_err, fmt='o', color=plot_color) elif (quantity == 'v2spectra'): plt.errorbar(x, y, yerr=y_err, fmt='o', color=plot_color) else: # yspectra plt.errorbar(x, y, yerr=y_err, fmt='o', color=plot_color) title_dict = { 'yspectra': '$dN/dy$', 'mtspectra': '$1/m_{T} \ d^2N/dm_{T} dy$ [GeV$^{-2}$]', 'ptspectra': '$1/p_{T} \ d^2N/dp_{T} dy$ [GeV$^{-2}$]', 'v2spectra': '$v_2$', } plot_title = sb.pdg_to_name(pdg, config_file).decode("utf-8") plot_title += ' in ' + colliding_system + ' collisions' plt.title(plot_title) plt.figtext(0.15, 0.94, " SMASH code: %s\n SMASH analysis: %s" % \ (smash_code_version, sb.analysis_version_string()), \ color = "gray", fontsize = 10) if (quantity == 'mtspectra' or quantity == 'ptspectra'): if np.all(y == 0): print 'No positive values encountered in ' + str(quantity) + ' for ' + str(pdg) +\ '. Cannot log-scale the y axis, scale will be linear.' else: plt.yscale('log', nonposy='clip') if (quantity == 'mtspectra'): plt.xlabel('$m_{T} - m_{0}$ [GeV]') else: plt.xlabel('$p_{T}$ [GeV]') elif (quantity == 'yspectra'): plt.xlabel('$y$') else: plt.xlabel('$p_{T}$ [GeV]') plt.ylabel(title_dict[quantity]) if (determine_collider(energy) != determine_collider( energies[(element + 1) % len(energies)])): if args.comp_prev_version: #dummy for legend entry of combined previous results. plt.plot(1, 0.0, linestyle='-', linewidth=10, zorder=1, color='dimgrey', label=prev_SMASH_version, alpha=0.2) plt.legend(loc='upper right', title='$\sqrt{s} \ $ [GeV] =', ncol=1, fontsize=26) plt.savefig(output_folder + '/' + quantity + '_' + colliding_system.replace('/', '') + '_' + str(determine_collider(energy)) + '_' + str(pdg) + '.pdf') plt.clf() plt.close() scaling_counter = -1 #re-initialize as generating a new plot # Save results plotted above for future comparison filename_AuAuPbPb = quantity + '_AuAuPbPb_' + str(pdg) + '.txt' filename_pp = quantity + '_pp_' + str(pdg) + '.txt' store_results(output_folder + '/' + filename_AuAuPbPb, collected_results_AuAuPbPb, smash_code_version, quantity) store_results(output_folder + '/' + filename_pp, collected_results_pp, smash_code_version, quantity)
with open(DataOutfile, 'r') as f: _, _, versions = \ f.readline(), f.readline(), f.readline() smash_version = versions.split()[1] smash_analysis_version = versions.split()[2] TimeSteps, dens_arr = np.loadtxt(DataOutfile, unpack=True, skiprows=5) plt.plot(TimeSteps, dens_arr, label=smash_version, color='darkred') # old version ? if comp_prev_version: import comp_to_prev_version as cpv processes = [] cpv.plot_previous_results('densities', DataOutfile.split('/')[-2], '/' + DataOutfile.split('/')[-1]) plt.title(r'Density central cell', loc='left', fontsize=30) plt.figtext(0.8, 0.95, "SMASH analysis: %s" % \ (sb.analysis_version_string()), \ color = "gray", fontsize = 10) plt.xlabel(r't [fm]') plt.ylabel(r'$\rho_\mathsf{B}/\rho_0$') plt.xlim(0, 40) plt.ylim(0, 5) plt.tight_layout() plt.legend() plt.savefig(PlotName, bbox_inches="tight") plt.close()
### (4a) Plot experimental data if args.exp_data != '': import comp_to_exp_data as ced ced.plot_angular_dist_data(args.exp_data, setup, pdg=[pdg1, pdg2]) ### (4b) plot data from previous SMASH versions if args.comp_prev_version: import comp_to_prev_version as cpv processes = [ 'total', 'N+N', 'N+N*', 'N+\xce\x94', 'N*+\xce\x94', 'N+\xce\x94*', '\xce\x94+\xce\x94', '\xce\x94+\xce\x94*' ] cpv.plot_previous_results('angular_distributions', setup, '/t.dat', color_list=colour_coding, process_list=processes) ### (5) set up axes, labels, etc plt.title( particle1.decode('utf8') + "+" + particle2.decode('utf8') + " @ $\sqrt{s}=" + str(round(np.sqrt(s), 2)) + "$ GeV") plt.xlabel("-t [$GeV^2$]") plt.ylabel("$d\sigma/dt$ [$mb/GeV^2$]") plt.yscale('log') plt.legend(title=smash_version, loc="best", fontsize=20, ncol=2) plt.figtext(0.8, 0.925, "SMASH analysis: %s" % \ (sb.analysis_version_string()), \ color = "gray", fontsize = 10) plt.tight_layout()
for i in range(0, len(descr_both)): f.write( unicode(descr_both[i]) + '\t' + str((contents[1::3].sum(axis=1) * react_norm)[i]) + '\t' + str((contents[2::3].sum(axis=1) * react_norm)[i]) + '\n') f.write('# ' + smash_code_version) ymax = max(max(contents[1::3].sum(axis=1) * react_norm), max(contents[2::3].sum(axis=1) * react_norm)) # plot reference data from previous SMASH version if args.comp_prev_version: import comp_to_prev_version as cpv cpv.plot_previous_results('detailed_balance', setup, '/Nreact_by_Nisopingroup.txt', process_list=descr_both, ymax=ymax) plt.plot(1, ymax * 4.0, linestyle='none', markersize=20, color='black', marker=">", label=str(smash_code_version)) plt.axhline(y=1, linestyle='-', color='grey', zorder=0, lw=1) plt.xticks(range(react_num), descr_both, fontsize=15, rotation=35) plt.yticks([0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4], fontsize=35) plt.ylim(0.0, ymax * 1.5) plt.xlim(-0.5, react_num - 0.5)
title = reac[1] + THIN_SPACE + reac[2] if final_state_names and len(final_state_names) == 1: title += '→' + final_state_names[0] title = title.replace('+', THIN_SPACE) ax.set_title(title) ax.set_xlabel(colnames[0]) ax.set_ylabel("$\sigma$ [mb]") smash_style.set() # (4a) plot data from previous SMASH version # after applying the SMASH style! Otherwise this curve would be reformatted # plot only total_xs from prev. version if current one is plotted as well if args.comp_prev_version: import comp_to_prev_version as cpv cpv.plot_previous_results('cross_sections', str(args.system), '/sqrts_totalXSec.txt') # Shrink current axis box = ax.get_position() ax.set_position([box.x0, box.y0, box.width * 0.5, box.height]) plt.legend(title=version, loc='center left', bbox_to_anchor=(1.04, 0.5), borderaxespad=0.) plt.figtext(0.8, 0.92, "SMASH analysis: %s" % \ (sb.analysis_version_string()), \ color = "gray", fontsize = 10) #if nlabels < 7: # ncol = 1 #elif nlabels < 13: # ncol = 2
def plot(name, bin_factor, ch_list, style_dict, datafile="", cut_legend=""): n_ch = len(ch_list) # import hist_data with open("hist_" + name + ".txt") as df_smash: data = np.loadtxt(df_smash, delimiter=' ', unpack=True) bin_centers = data[0, :] hist = data[1:n_ch + 1, :] # make dN/dx plot bin_width = bin_centers[1] - bin_centers[0] hist_dx = hist[:] / bin_width # renormalize for data comparison (currently only mass spectra compared with data) if datafile != "": # do cross section plot for pp, data in mub if args.system == "pp" or args.system == "pNb": hist_dx = hist_dx * \ cross_sections_dict[args.system + args.energy] * 1000 # spectra for CC is normalized with averaged number of pions if args.system == "CC" or args.system == "ArKCl": hist_dx = hist_dx / normalization_AA() # rebin bin_centers_new, hist_new = rebin(bin_centers, hist_dx, n_ch, bin_factor) # plotting plt.plot(bin_centers_new, sum(hist_new), label="all", color='k', linewidth=3) for i in range(len(ch_list)): plt.plot(bin_centers_new, hist_new[i], style_dict["l_style"][i], label=ch_list[i], linewidth=2) # plot data if datafile != "": if 'mass' in name: data_path = os.path.join( args.data_dir + 'm_inv_spectrum_dileptons/' + args.system, datafile) elif 'pt' in name: data_path = os.path.join( args.data_dir + 'pT_spectrum/' + args.system + '/', datafile) elif 'y' in name: data_path = os.path.join( args.data_dir + 'y_spectrum/' + args.system + '/', datafile) else: print 'No experimental data found.' with open(data_path) as df: data = np.loadtxt(df, unpack=True) x_data = data[0, :] y_data = data[1, :] y_data_err = data[2, :] plt.errorbar(x_data, y_data, yerr=y_data_err, fmt='ro', ecolor='k', label="HADES", zorder=3) # write and read old results, only for total dN/dm spectra if name == "mass": # store dN/dm spectra for future comparison to previous version store_results("dN_dm_tot.txt", bin_centers_new, sum(hist_new), version()) if args.comp_prev_version: import comp_to_prev_version as cpv # plot reference data from previous SMASH version setup = str(args.system) + "_" + str( args.energy) + "_" + "filtered" cpv.plot_previous_results('dileptons', setup, '/dN_dm_tot.txt') # plot style leg = plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, mode="expand", borderaxespad=0, fancybox=True, title=args.system + "@" + args.energy + " GeV " + cut_legend) #plt.annotate(version(), xy=(0.02, 0.03), xycoords='axes fraction', bbox=dict(boxstyle="round", fc="w"), fontsize=12) plt.annotate('SMASH version: ' + version() + '\n' + 'Analysis suite version: ' + sb.analysis_version_string(), xy=(0.4, 0.92), xycoords='axes fraction', bbox=dict(boxstyle="round", fc="w"), fontsize=8) plt.xlim(style_dict["x_min"], style_dict["x_max"]) plt.ylim(style_dict["y_min"], style_dict["y_max"]) plt.xlabel(style_dict["xlab"]) plt.ylabel(style_dict["ylab"]) plt.yscale('log') plt.savefig("plot_" + name + ".pdf", bbox_extra_artists=(leg, ), bbox_inches='tight') plt.cla()
y /= N plt.errorbar(x, y, yerr=yerr, label=version, color="darkred", linestyle='-', zorder=3) # store results save_table(OrderedDict([('x', x), ('y', y), ('yerr', yerr)]), 'multiplicity.txt', version) if args.comp_prev_version: # Compare to previous version import comp_to_prev_version as cpv cpv.plot_previous_results('FOPI_pions', 'multiplicity', '.txt') smash_style.set(line_styles=False, update_legends=True) plt.xlabel("$E_{kin}$ [AGeV]") plt.xlim(0.3, 1.6) plt.yscale('log') plt.ylim(2, 100) plt.ylabel(r"$M(\pi)=3/2\,(N_{\pi^+}+N_{\pi^-})$") plt.legend(loc="lower right") ### (3) plot ratio plt.subplot(312) if args.FOPI_ratio != '': if 'ced' not in sys.modules:
def plot_data(input_txt_file, plot_position, plot_color): plt.subplot(gs[plot_position,0]) coll_criterion_name = os.path.basename(input_txt_file)[9:-4] plt.annotate(coll_criterion_name + " criterion", xy=(0.03, 0.075), xycoords='axes fraction',weight='heavy' , color=plot_color, fontsize =40) # Get data from file data = np.genfromtxt(input_txt_file, names=('Ncoll', 'Nevents', 't_run', 'V', 'sigma', 'N', 'Ntest', 'T', 'dt')) with open(input_txt_file, 'r') as f: smash_version = f.readlines()[-1].strip('# \n') # Sort by x axis variable data = data[data[xvar].argsort()] x = data[xvar] y = data['Ncoll'] # Make a text label about the properties of the used box s=[] s.append('Elastic Box$:$') if (xvar != 'V'): s.append("$V$ = %.1f fm$^3$" % data['V'][0]) if (xvar != 'sigma'): s.append("$\sigma$ = %.1f fm$^2$" % data['sigma'][0]) if (xvar != 'N'): s.append("$N$ = %i" % data['N'][0]) if (xvar != 'Ntest'): s.append("$N_{test}$ = %i" % data['Ntest'][0]) if (xvar != 'T'): s.append("$T$ = %.3f GeV" % data['T'][0]) if (xvar != 'dt'): s.append("$dt$ = %s fm/c" % data['dt'][0]) s.append("$t_{tot}$ = %.1f fm/c" % data['t_run'][0]) s.append("$N_{ev}$ = %i" % data['Nevents'][0]) box_label = '\n'.join(s) if plot_position == 0: # only print title and input box once plt.annotate(box_label, xy=(1.02, 0.97), ha="left", va="top", xycoords='axes fraction', fontsize=30) plt.title('only $\pi^0$, only elastic collisions', fontsize=30, y=1.02) if plot_position == 2: # print xlabel only once plt.annotate(y_label_defintion, xy=(0.72, 0.175), xycoords='axes fraction', fontsize =30) # Number of collisions is expected to be equal to this norm (for <v> = c) norm = data['Nevents'] * data['t_run'] * (data['sigma'] * 0.5 * data['N'] * data['N'] * data['Ntest'] / data['V']) # Average relative velocity factor, arXiv:1311.4494, matters only at m/T < 0.7 a = 0.135/data['T'] # m_pi0/T v_rel = 4./a * sp.kn(3, 2.0*a) / np.power(sp.kn(2, a), 2) norm *= v_rel y = y / norm y_error = np.sqrt(data['Ncoll']) / norm plt.errorbar(x, y, yerr=y_error, fmt='o', capsize=10, label=smash_version, markersize = 15, zorder = 2, markeredgecolor= plot_color, color=plot_color) if args.comp_prev_version: import comp_to_prev_version as cpv # plot reference data from previous SMASH version cpv.plot_previous_results('elastic_box', args.setup, '-' + coll_criterion_name + '.txt') plt.xlim(0.0, 1.05 * x.max()) plt.ylim(ymin=0.4, ymax=max(1.75, 1.1 * y.max())) if (xvar == 'dt'): plt.xscale('log') plt.xlim(1.e-4, 2.0 * x.max()) plt.gca().tick_params(pad=10) # store plotted data save_table( OrderedDict([('x', x), ('y', y), ("y_error", y_error)]), '{}.txt'.format(args.setup + "-" + coll_criterion_name), smash_version, ) plt.legend(loc = 'upper right', fontsize = 30) plt.axhline(1, linewidth=3, linestyle='--', color='black', zorder = 0) if plot_position == 1: plt.ylabel(y_label, fontsize=50) if plot_position == 2: plt.xlabel(x_labels[xvar])