コード例 #1
0
  def apply(self, z, y, is_training):
    """Build the generator network for the given inputs.

    Args:
      z: `Tensor` of shape [batch_size, z_dim] with latent code.
      y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
        labels.
      is_training: boolean, are we in train or eval model.

    Returns:
      A tensor of size [batch_size] + self._image_shape with values in [0, 1].
    """
    shape_or_none = lambda t: None if t is None else t.shape
    logging.info("[Generator] inputs are z=%s, y=%s", z.shape, shape_or_none(y))
    # Each block upscales by a factor of 2.
    seed_size = 4
    z_dim = z.shape[1].value

    in_channels, out_channels = self._get_in_out_channels()
    num_blocks = len(in_channels)

    if self._embed_z:
      z = ops.linear(z, z_dim, scope="embed_z", use_sn=False,
                     use_bias=self._embed_bias)
    if self._embed_y:
      y = ops.linear(y, self._embed_y_dim, scope="embed_y", use_sn=False,
                     use_bias=self._embed_bias)
    y_per_block = num_blocks * [y]
    if self._hierarchical_z:
      z_per_block = tf.split(z, num_blocks + 1, axis=1)
      z0, z_per_block = z_per_block[0], z_per_block[1:]
      if y is not None:
        y_per_block = [tf.concat([zi, y], 1) for zi in z_per_block]
    else:
      z0 = z
      z_per_block = num_blocks * [z]

    logging.info("[Generator] z0=%s, z_per_block=%s, y_per_block=%s",
                 z0.shape, [str(shape_or_none(t)) for t in z_per_block],
                 [str(shape_or_none(t)) for t in y_per_block])

    # Map noise to the actual seed.
    net = ops.linear(
        z0,
        in_channels[0] * seed_size * seed_size,
        scope="fc_noise",
        use_sn=self._spectral_norm)
    # Reshape the seed to be a rank-4 Tensor.
    net = tf.reshape(
        net,
        [-1, seed_size, seed_size, in_channels[0]],
        name="fc_reshaped")

    for block_idx in range(num_blocks):
      name = "B{}".format(block_idx + 1)
      block = self._resnet_block(
          name=name,
          in_channels=in_channels[block_idx],
          out_channels=out_channels[block_idx],
          scale="up")
      net = block(
          net,
          z=z_per_block[block_idx],
          y=y_per_block[block_idx],
          is_training=is_training)
      if name in self._blocks_with_attention:
        logging.info("[Generator] Applying non-local block to %s", net.shape)
        net = ops.non_local_block(net, "non_local_block",
                                  use_sn=self._spectral_norm)
    # Final processing of the net.
    # Use unconditional batch norm.
    logging.info("[Generator] before final processing: %s", net.shape)
    net = ops.batch_norm(net, is_training=is_training, name="final_norm")
    net = tf.nn.relu(net)
    net = ops.conv2d(net, output_dim=self._image_shape[2], k_h=3, k_w=3,
                     d_h=1, d_w=1, name="final_conv",
                     use_sn=self._spectral_norm)
    logging.info("[Generator] after final processing: %s", net.shape)
    net = (tf.nn.tanh(net) + 1.0) / 2.0
    return net
コード例 #2
0
  def apply(self, x, y, is_training):
    """Apply the discriminator on a input.

    Args:
      x: `Tensor` of shape [batch_size, ?, ?, ?] with real or fake images.
      y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
        labels.
      is_training: Boolean, whether the architecture should be constructed for
        training or inference.

    Returns:
      Tuple of 3 Tensors, the final prediction of the discriminator, the logits
      before the final output activation function and logits form the second
      last layer.
    """
    logging.info("[Discriminator] inputs are x=%s, y=%s", x.shape,
                 None if y is None else y.shape)
    resnet_ops.validate_image_inputs(x)

    in_channels, out_channels = self._get_in_out_channels(
        colors=x.shape[-1].value, resolution=x.shape[1].value)
    num_blocks = len(in_channels)

    net = x
    for block_idx in range(num_blocks):
      name = "B{}".format(block_idx + 1)
      is_last_block = block_idx == num_blocks - 1
      block = self._resnet_block(
          name=name,
          in_channels=in_channels[block_idx],
          out_channels=out_channels[block_idx],
          scale="none" if is_last_block else "down")
      net = block(net, z=None, y=y, is_training=is_training)
      if name in self._blocks_with_attention:
        logging.info("[Discriminator] Applying non-local block to %s",
                     net.shape)
        net = ops.non_local_block(net, "non_local_block",
                                  use_sn=self._spectral_norm)

    # Final part
    logging.info("[Discriminator] before final processing: %s", net.shape)
    net = tf.nn.relu(net)
    h = tf.math.reduce_sum(net, axis=[1, 2])
    out_logit = ops.linear(h, 1, scope="final_fc", use_sn=self._spectral_norm)
    logging.info("[Discriminator] after final processing: %s", net.shape)
    if self._project_y:
      if y is None:
        raise ValueError("You must provide class information y to project.")
      with tf.variable_scope("embedding_fc"):
        y_embedding_dim = out_channels[-1]
        # We do not use ops.linear() below since it does not have an option to
        # override the initializer.
        kernel = tf.get_variable(
            "kernel", [y.shape[1], y_embedding_dim], tf.float32,
            initializer=tf.initializers.glorot_normal())
        if self._spectral_norm:
          kernel = ops.spectral_norm(kernel)
        embedded_y = tf.matmul(y, kernel)
        logging.info("[Discriminator] embedded_y for projection: %s",
                     embedded_y.shape)
        out_logit += tf.reduce_sum(embedded_y * h, axis=1, keepdims=True)
    out = tf.nn.sigmoid(out_logit)
    return out, out_logit, h
コード例 #3
0
    def apply(self, z, y, is_training):
        """Build the generator network for the given inputs.

    Args:
      z: `Tensor` of shape [batch_size, z_dim] with latent code.
      y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
        labels.
      is_training: boolean, are we in train or eval model.

    Returns:
      A tensor of size [batch_size] + self._image_shape with values in [0, 1].
    """
        shape_or_none = lambda t: None if t is None else t.shape
        logging.info("[Generator] inputs are z=%s, y=%s", z.shape,
                     shape_or_none(y))
        seed_size = 4

        if self._embed_y:
            y = ops.linear(y,
                           self._embed_y_dim,
                           scope="embed_y",
                           use_sn=False,
                           use_bias=False)
        if y is not None:
            y = tf.concat([z, y], axis=1)
            z = y

        in_channels, out_channels = self._get_in_out_channels()
        num_blocks = len(in_channels)

        # Map noise to the actual seed.
        net = ops.linear(z,
                         in_channels[0] * seed_size * seed_size,
                         scope="fc_noise",
                         use_sn=self._spectral_norm)
        # Reshape the seed to be a rank-4 Tensor.
        net = tf.reshape(net, [-1, seed_size, seed_size, in_channels[0]],
                         name="fc_reshaped")

        for block_idx in range(num_blocks):
            scale = "none" if block_idx % 2 == 0 else "up"
            block = self._resnet_block(name="B{}".format(block_idx + 1),
                                       in_channels=in_channels[block_idx],
                                       out_channels=out_channels[block_idx],
                                       scale=scale)
            net = block(net, z=z, y=y, is_training=is_training)
            # At resolution 64x64 there is a self-attention block.
            if scale == "up" and net.shape[1].value == 64:
                logging.info("[Generator] Applying non-local block to %s",
                             net.shape)
                net = ops.non_local_block(net,
                                          "non_local_block",
                                          use_sn=self._spectral_norm)
        # Final processing of the net.
        # Use unconditional batch norm.
        logging.info("[Generator] before final processing: %s", net.shape)
        net = ops.batch_norm(net, is_training=is_training, name="final_norm")
        net = tf.nn.relu(net)
        colors = self._image_shape[2]
        if self._experimental_fast_conv_to_rgb:

            net = ops.conv2d(net,
                             output_dim=128,
                             k_h=3,
                             k_w=3,
                             d_h=1,
                             d_w=1,
                             name="final_conv",
                             use_sn=self._spectral_norm)
            net = net[:, :, :, :colors]
        else:
            net = ops.conv2d(net,
                             output_dim=colors,
                             k_h=3,
                             k_w=3,
                             d_h=1,
                             d_w=1,
                             name="final_conv",
                             use_sn=self._spectral_norm)
        logging.info("[Generator] after final processing: %s", net.shape)
        net = (tf.nn.tanh(net) + 1.0) / 2.0
        return net