def test_model_comparison_give_non_null_performance_with_regression_and_categorical_feature( ): # Given cross_validation_n_folds = 2 features = pd.DataFrame({ "string_feature": list( np.random.choice(["Paris", "London", "Madrid", "Roma"], n_samples - 1)) + [None], }) comparison_dataset = ComparisonDataset(TaskName.REGRESSION, features, numerical_target, cross_validation_n_folds) # When model_comparison = TunedModelComparison(comparison_dataset, max_parameters_to_test_in_tuning=5, early_stopping_patience=1) comparison = model_comparison.get_models_scores_and_training_time() # Then for model_name, performance_and_training_time in comparison.items(): performance = performance_and_training_time[MODEL_SCORE] assert_that(~np.isnan(performance), reason=f"Null performance value for model {model_name}")
def test_model_comparison_give_non_null_performance_with_classification(): # Given features = pd.DataFrame( {"numeric_feature": np.random.normal(size=n_samples)}) comparison_dataset = ComparisonDataset(TaskName.CLASSIFICATION, features, categorical_target, cross_validation_n_folds) # When comparison = ModelComparison( comparison_dataset).get_models_scores_and_training_time() # Then for model_name, performance_and_training_time in comparison.items(): performance = performance_and_training_time[MODEL_SCORE] assert_that(~np.isnan(performance), reason=f"Null performance value for model {model_name}")
def test_model_comparison_give_non_null_performance_with_regression_and_numerial_feature( ): # Given cross_validation_n_folds = 2 features = pd.DataFrame( {"numeric_feature": np.random.normal(size=n_samples)}) comparison_dataset = ComparisonDataset(TaskName.REGRESSION, features, numerical_target, cross_validation_n_folds) # When model_comparison = TunedModelComparison(comparison_dataset, max_parameters_to_test_in_tuning=5, early_stopping_patience=1) comparison = model_comparison.get_models_scores_and_training_time() # Then for model_name, performance_and_training_time in comparison.items(): performance = performance_and_training_time[MODEL_SCORE] assert_that(~np.isnan(performance), reason=f"Null performance value for model {model_name}")
def test_model_comparison_give_non_null_performance_and_categorical_feature(): # Given features = pd.DataFrame({ "string_feature": np.random.choice(["Paris", "London", "Madrid", "Roma"], n_samples), "numeric_feature": np.random.normal(size=n_samples) }) comparison_dataset = ComparisonDataset(TaskName.REGRESSION, features, categorical_target, cross_validation_n_folds) # When comparison = ModelComparison( comparison_dataset).get_models_scores_and_training_time() # Then for model_name, performance_and_training_time in comparison.items(): performance = performance_and_training_time[MODEL_SCORE] assert_that(~np.isnan(performance), reason=f"Null performance value for model {model_name}")