コード例 #1
0
def main():
    compas_mesh = Mesh.from_obj(os.path.join(DATA, MODEL))
    move_mesh_to_point(compas_mesh, Point(0, 0, 0))

    # Slicing
    slicer = PlanarSlicer(compas_mesh, slicer_type="cgal", layer_height=5.0)
    slicer.slice_model()

    # Sorting into vertical layers and reordering
    sort_into_vertical_layers(slicer, max_paths_per_layer=10)
    reorder_vertical_layers(slicer, align_with="x_axis")

    # Post-processing
    generate_brim(slicer, layer_width=3.0, number_of_brim_offsets=5)
    simplify_paths_rdp_igl(slicer, threshold=0.7)
    seams_smooth(slicer, smooth_distance=10)
    slicer.printout_info()
    save_to_json(slicer.to_data(), OUTPUT_DIR, 'slicer_data.json')

    # PlanarPrintOrganization
    print_organizer = PlanarPrintOrganizer(slicer)
    print_organizer.create_printpoints()

    set_extruder_toggle(print_organizer, slicer)
    add_safety_printpoints(print_organizer, z_hop=10.0)
    set_linear_velocity_constant(print_organizer, v=25.0)
    set_blend_radius(print_organizer, d_fillet=10.0)

    print_organizer.printout_info()

    printpoints_data = print_organizer.output_printpoints_dict()
    utils.save_to_json(printpoints_data, OUTPUT_DIR, 'out_printpoints.json')
コード例 #2
0
def main():

    compas_mesh = Mesh.from_obj(os.path.join(DATA, MODEL))
    delta = get_param({}, key='delta',
                      defaults_type='gcode')  # boolean for delta printers
    print_volume_x = get_param({}, key='print_volume_x',
                               defaults_type='gcode')  # in mm
    print_volume_y = get_param({}, key='print_volume_y',
                               defaults_type='gcode')  # in mm
    if delta:
        move_mesh_to_point(compas_mesh, Point(0, 0, 0))
    else:
        move_mesh_to_point(compas_mesh,
                           Point(print_volume_x / 2, print_volume_y / 2, 0))

    # ----- slicing
    slicer = PlanarSlicer(compas_mesh, slicer_type="cgal", layer_height=4.5)
    slicer.slice_model()
    generate_brim(slicer, layer_width=3.0, number_of_brim_offsets=4)
    simplify_paths_rdp_igl(slicer, threshold=0.6)
    seams_smooth(slicer, smooth_distance=10)
    slicer.printout_info()
    save_to_json(slicer.to_data(), OUTPUT_DIR, 'slicer_data.json')

    # ----- print organization
    print_organizer = PlanarPrintOrganizer(slicer)
    print_organizer.create_printpoints()
    # Set fabrication-related parameters
    set_extruder_toggle(print_organizer, slicer)
    print_organizer.printout_info()

    # create and output gcode
    gcode_parameters = {}  # leave all to default
    gcode_text = print_organizer.output_gcode(gcode_parameters)
    utils.save_to_text_file(gcode_text, OUTPUT_DIR, 'my_gcode.gcode')
コード例 #3
0
def main():
    start_time = time.time()

    # ==========================================================================
    # Load mesh
    # ==========================================================================
    compas_mesh = Mesh.from_obj(os.path.join(DATA, MODEL))

    # ==========================================================================
    # Move to origin
    # ==========================================================================
    move_mesh_to_point(compas_mesh, Point(0, 0, 0))

    # ==========================================================================
    # Slicing
    # options: 'default': Both for open and closed paths. But slow
    #          'cgal':    Very fast. Only for closed paths.
    #                     Requires additional installation (compas_cgal).
    # ==========================================================================
    slicer = PlanarSlicer(compas_mesh, slicer_type="cgal", layer_height=1.5)
    slicer.slice_model()

    # ==========================================================================
    # Generate brim / raft
    # ==========================================================================
    # NOTE: Typically you would want to use either a brim OR a raft,
    # however, in this example both are used to explain the functionality
    generate_brim(slicer, layer_width=3.0, number_of_brim_offsets=4)
    generate_raft(slicer,
                  raft_offset=20,
                  distance_between_paths=5,
                  direction="xy_diagonal",
                  raft_layers=1)

    # ==========================================================================
    # Simplify the paths by removing points with a certain threshold
    # change the threshold value to remove more or less points
    # ==========================================================================
    simplify_paths_rdp_igl(slicer, threshold=0.6)

    # ==========================================================================
    # Smooth the seams between layers
    # change the smooth_distance value to achieve smoother, or more abrupt seams
    # ==========================================================================
    seams_smooth(slicer, smooth_distance=10)

    # ==========================================================================
    # Prints out the info of the slicer
    # ==========================================================================
    slicer.printout_info()

    # ==========================================================================
    # Save slicer data to JSON
    # ==========================================================================
    save_to_json(slicer.to_data(), OUTPUT_DIR, 'slicer_data.json')

    # ==========================================================================
    # Initializes the PlanarPrintOrganizer and creates PrintPoints
    # ==========================================================================
    print_organizer = PlanarPrintOrganizer(slicer)
    print_organizer.create_printpoints()

    # ==========================================================================
    # Set fabrication-related parameters
    # ==========================================================================
    set_extruder_toggle(print_organizer, slicer)
    add_safety_printpoints(print_organizer, z_hop=10.0)
    set_linear_velocity_constant(print_organizer, v=25.0)
    set_blend_radius(print_organizer, d_fillet=10.0)

    # ==========================================================================
    # Prints out the info of the PrintOrganizer
    # ==========================================================================
    print_organizer.printout_info()

    # ==========================================================================
    # Converts the PrintPoints to data and saves to JSON
    # =========================================================================
    printpoints_data = print_organizer.output_printpoints_dict()
    utils.save_to_json(printpoints_data, OUTPUT_DIR, 'out_printpoints.json')

    # ==========================================================================
    # Initializes the compas_viewer and visualizes results
    # ==========================================================================
    viewer = app.App(width=1600, height=1000)
    # slicer.visualize_on_viewer(viewer, visualize_mesh=False, visualize_paths=True)
    print_organizer.visualize_on_viewer(viewer, visualize_printpoints=True)
    viewer.show()

    end_time = time.time()
    print("Total elapsed time", round(end_time - start_time, 2), "seconds")
コード例 #4
0
    for v_key, data in mesh.vertices(data=True):
        v_coord = mesh.vertex_coordinates(v_key, axes='xyz')
        data['dist_from_plane'] = distance_point_plane(v_coord, plane)

    # direction towards point - Vector value (per vertex)
    mesh.update_default_vertex_attributes({'direction_to_pt': 0.0})
    pt = Point(4.0, 1.0, 0.0)
    for v_key, data in mesh.vertices(data=True):
        v_coord = mesh.vertex_coordinates(v_key, axes='xyz')
        data['direction_to_pt'] = np.array(
            normalize_vector(Vector.from_start_end(v_coord, pt)))

    # --------------- Slice mesh
    slicer = PlanarSlicer(mesh, slicer_type="default", layer_height=5.0)
    slicer.slice_model()
    simplify_paths_rdp_igl(slicer, threshold=1.0)
    slicer_utils.save_to_json(slicer.to_data(), OUTPUT_PATH,
                              'slicer_data.json')

    # --------------- Create printpoints
    print_organizer = PlanarPrintOrganizer(slicer)
    print_organizer.create_printpoints()

    # --------------- Transfer mesh attributes to printpoints
    transfer_mesh_attributes_to_printpoints(mesh,
                                            print_organizer.printpoints_dict)

    # --------------- Save printpoints to json (only json-serializable attributes are saved)
    printpoints_data = print_organizer.output_printpoints_dict()
    utils.save_to_json(printpoints_data, OUTPUT_PATH, 'out_printpoints.json')
コード例 #5
0
        distance_point_point(pt, proj_pt)
        for pt, proj_pt in zip(pts, projected_pts)
    ]  # list with distance between initial+projected pts (one per vertex)
    utils.save_to_json(
        u, OUTPUT_PATH,
        'distance_field.json')  # save distance field to json for visualization

    # --- assign the scalar field to the mesh's attributes, under the name 'scalar_field'
    mesh.update_default_vertex_attributes({'scalar_field': 0.0})
    for i, (v_key, data) in enumerate(mesh.vertices(data=True)):
        data['scalar_field'] = u[i]

    # --- Slice model by generating contours of scalar field
    slicer = ScalarFieldSlicer(mesh, u, no_of_isocurves=50)
    slicer.slice_model()
    # simplify_paths_rdp(slicer, threshold=0.3)
    slicer_utils.save_to_json(slicer.to_data(), OUTPUT_PATH,
                              'isocontours.json')  # save results to json

    # --- Print organization calculations (i.e. generation of printpoints with fabrication-related information)
    simplify_paths_rdp_igl(slicer, threshold=0.3)
    print_organizer = ScalarFieldPrintOrganizer(slicer,
                                                parameters={},
                                                DATA_PATH=DATA_PATH)
    print_organizer.create_printpoints()

    print_organizer.printout_info()
    printpoints_data = print_organizer.output_printpoints_dict()
    utils.save_to_json(printpoints_data, OUTPUT_PATH,
                       'out_printpoints.json')  # save results to json
コード例 #6
0
def main():
    start_time = time.time()

    # --- Load initial_mesh
    mesh = Mesh.from_obj(os.path.join(DATA_PATH, OBJ_INPUT_NAME))

    # --- Load targets (boundaries)
    low_boundary_vs = utils.load_from_json(DATA_PATH, 'boundaryLOW.json')
    high_boundary_vs = utils.load_from_json(DATA_PATH, 'boundaryHIGH.json')
    create_mesh_boundary_attributes(mesh, low_boundary_vs, high_boundary_vs)

    avg_layer_height = 15.0

    parameters = {
        'avg_layer_height':
        avg_layer_height,  # controls number of curves that will be generated
        'min_layer_height': 0.3,
        'max_layer_height': 5.0  # 2.0,
    }

    preprocessor = InterpolationSlicingPreprocessor(mesh, parameters,
                                                    DATA_PATH)
    preprocessor.create_compound_targets()
    g_eval = preprocessor.create_gradient_evaluation(
        norm_filename='gradient_norm.json',
        g_filename='gradient.json',
        target_1=preprocessor.target_LOW,
        target_2=preprocessor.target_HIGH)
    preprocessor.find_critical_points(
        g_eval,
        output_filenames=['minima.json', 'maxima.json', 'saddles.json'])

    # --- slicing
    slicer = InterpolationSlicer(mesh, preprocessor, parameters)
    slicer.slice_model()  # compute_norm_of_gradient contours
    generate_brim(slicer, layer_width=3.0, number_of_brim_offsets=5)
    seams_smooth(slicer, smooth_distance=10)

    simplify_paths_rdp_igl(slicer, threshold=0.5)
    slicer.printout_info()
    utils.save_to_json(slicer.to_data(), OUTPUT_PATH, 'curved_slicer.json')

    # --- Print organizer
    print_organizer = InterpolationPrintOrganizer(slicer, parameters,
                                                  DATA_PATH)
    print_organizer.create_printpoints()

    set_linear_velocity_by_range(
        print_organizer,
        param_func=lambda ppt: ppt.layer_height,
        parameter_range=[avg_layer_height * 0.5, avg_layer_height * 2.0],
        velocity_range=[150, 70],
        bound_remapping=False)
    set_extruder_toggle(print_organizer, slicer)
    add_safety_printpoints(print_organizer, z_hop=10.0)
    smooth_printpoints_up_vectors(print_organizer, strength=0.5, iterations=10)
    smooth_printpoints_layer_heights(print_organizer,
                                     strength=0.5,
                                     iterations=5)

    # --- Save printpoints dictionary to json file
    printpoints_data = print_organizer.output_printpoints_dict()
    utils.save_to_json(printpoints_data, OUTPUT_PATH, 'out_printpoints.json')

    # ----- Visualize
    viewer = app.App(width=1600, height=1000)
    # slicer.visualize_on_viewer(viewer, visualize_mesh=False, visualize_paths=True)
    print_organizer.visualize_on_viewer(viewer, visualize_printpoints=True)
    viewer.show()

    end_time = time.time()
    print("Total elapsed time", round(end_time - start_time, 2), "seconds")
コード例 #7
0
def main():
    start_time = time.time()

    avg_layer_height = 4.0
    parameters = {
        'avg_layer_height':
        avg_layer_height,  # controls number of curves that will be generated
        'min_layer_height': 0.2,
        'max_layer_height': 4.0,
        'uneven_upper_targets_offset': 0,
        'target_HIGH_smooth_union': [True, [25.0]],  # on/off, blend radius
    }

    ### --- Load initial_mesh
    mesh = Mesh.from_obj(os.path.join(DATA_PATH, OBJ_INPUT_NAME))

    # --- Load targets (boundaries)
    low_boundary_vs = utils.load_from_json(DATA_PATH, 'boundaryLOW.json')
    high_boundary_vs = utils.load_from_json(DATA_PATH, 'boundaryHIGH.json')
    create_mesh_boundary_attributes(mesh, low_boundary_vs, high_boundary_vs)

    # --- Create pre-processor
    preprocessor = InterpolationSlicingPreprocessor(mesh, parameters,
                                                    DATA_PATH)
    preprocessor.create_compound_targets()
    preprocessor.targets_laplacian_smoothing(iterations=4, strength=0.05)

    #########################################
    # --- region split
    if REGION_SPLIT:
        # --- ADVANCED slicing with region split
        g_eval = preprocessor.create_gradient_evaluation(
            target_1=preprocessor.target_LOW,
            target_2=preprocessor.target_HIGH,
            save_output=True)
        preprocessor.find_critical_points(
            g_eval,
            output_filenames=['minima.json', 'maxima.json', 'saddles.json'])
        preprocessor.region_split(
            save_split_meshes=True)  # split mesh regions on saddle points
        # utils.interrupt()

    #########################################
    # --- slicing
    if SLICER:

        slicers = []
        filenames = utils.get_all_files_with_name('split_mesh_', '.json',
                                                  OUTPUT_PATH)
        split_meshes = [
            Mesh.from_json(os.path.join(OUTPUT_PATH, filename))
            for filename in filenames
        ]
        for i, split_mesh in enumerate(split_meshes):
            preprocessor_split = InterpolationSlicingPreprocessor(
                split_mesh, parameters, DATA_PATH)
            preprocessor_split.create_compound_targets()
            preprocessor_split.create_gradient_evaluation(
                norm_filename='gradient_norm_%d.json' % i,
                g_filename='gradient_%d.json' % i,
                target_1=preprocessor_split.target_LOW,
                target_2=preprocessor_split.target_HIGH)

            slicer = InterpolationSlicer(split_mesh, preprocessor_split,
                                         parameters)
            if i == 3:
                slicer.n_multiplier = 0.85
            slicer.slice_model()

            if i == 0:
                generate_brim(slicer,
                              layer_width=3.0,
                              number_of_brim_offsets=5)

            seams_smooth(slicer, smooth_distance=0.1)
            simplify_paths_rdp_igl(slicer, threshold=0.25)
            utils.save_to_json(slicer.to_data(), OUTPUT_PATH,
                               'curved_slicer_%d.json' % i)
            slicers.append(slicer)

        # utils.interrupt()

    #########################################
    # --- print organization
    if PRINT_ORGANIZER:
        filenames = utils.get_all_files_with_name('curved_slicer_', '.json',
                                                  OUTPUT_PATH)
        slicers = [
            InterpolationSlicer.from_data(
                utils.load_from_json(OUTPUT_PATH, filename))
            for filename in filenames
        ]
        for i, slicer in enumerate(slicers):
            print_organizer = InterpolationPrintOrganizer(
                slicer, parameters, DATA_PATH)
            print_organizer.create_printpoints()
            set_extruder_toggle(print_organizer, slicer)
            set_blend_radius(print_organizer)
            add_safety_printpoints(print_organizer, z_hop=10.0)
            smooth_printpoints_up_vectors(print_organizer,
                                          strength=0.5,
                                          iterations=10)
            set_wait_time_on_sharp_corners(print_organizer,
                                           threshold=0.5 * math.pi,
                                           wait_time=0.2)

            # --- Save printpoints dictionary to json file
            printpoints_data = print_organizer.output_printpoints_dict()
            utils.save_to_json(printpoints_data, OUTPUT_PATH,
                               'out_printpoints_%d.json' % i)

    end_time = time.time()
    print("Total elapsed time", round(end_time - start_time, 2), "seconds")