コード例 #1
0
n = 500
pmin = -1  # minimum log price
pmax = 1  # maximum log price
Value = BasisSpline(n, pmin, pmax, labels=['logprice'], l=['value'])
print(Value)

# In the last expression, by passing the option `l` with a one-element list we are telling the ```BasisSpline``` class that we a single function named "value". On creation, the function will be set by default to $V(p)=0$ for all values of $p$, which conveniently corresponds to the terminal condition of this problem.

# ## Finding the critical exercise prices
#
# We are going to find the prices recursively, starting form a option in the expiration date. Notice that the solution to this problem is trivial: since next-period value is zero, the exercise price is $K$. Either way, we can find it numerically by calling the ```zero``` method on the `f` object.

# In[7]:

pcrit[0] = f.zero(0.0)

# Next, for each possible price shock, we compute next period log-price by adding the shock to current log-prices (the nodes of the Value object). Then, we use each next-period price to compute the expected value of an option with one-period to maturity (save the values in ```v```). We update the value function to reflect the new time-to-maturity and use ```broyden``` to solve for the critical value. We repeat this procedure until we reach the $T=300$ horizon.

# In[8]:

for t in range(T):
    v = np.zeros((1, n))
    for k in range(m):
        pnext = Value.nodes + e[k]
        v += w[k] * np.maximum(K - np.exp(pnext), delta * Value(pnext))

    Value[:] = v
    pcrit[t + 1] = f.broyden(pcrit[t])

# ### Print Critical Exercise Price 300 Periods to Expiration
コード例 #2
0
pmax  =  1 # maximum log price
Value = BasisSpline(n, pmin, pmax,
                    labels=['logprice'], l=['value'])
print(Value)


# In the last expression, by passing the option `l` with a one-element list we are telling the ```BasisSpline``` class that we a single function named "value". On creation, the function will be set by default to $V(p)=0$ for all values of $p$, which conveniently corresponds to the terminal condition of this problem.

# ## Finding the critical exercise prices
# 
# We are going to find the prices recursively, starting form a option in the expiration date. Notice that the solution to this problem is trivial: since next-period value is zero, the exercise price is $K$. Either way, we can find it numerically by calling the ```zero``` method on the `f` object.

# In[7]:


pcrit[0] = f.zero(0.0)


# Next, for each possible price shock, we compute next period log-price by adding the shock to current log-prices (the nodes of the Value object). Then, we use each next-period price to compute the expected value of an option with one-period to maturity (save the values in ```v```). We update the value function to reflect the new time-to-maturity and use ```broyden``` to solve for the critical value. We repeat this procedure until we reach the $T=300$ horizon.

# In[8]:


for t in range(T):
    v = np.zeros((1, n))
    for k in range(m):
        pnext = Value.nodes + e[k]
        v += w[k] * np.maximum(K - np.exp(pnext), delta * Value(pnext))

    Value[:] = v
    pcrit[t + 1] = f.broyden(pcrit[t])
コード例 #3
0
print('q1 = ', x[0], '\nq2 = ', x[1])
''' Example page 43 '''
# numbers don't match those of Table 3.1, but CompEcon2014' broyden gives same answer as this code
example(43)
opts = {'maxit': 30, 'all_x': True, 'print': True}

g = NLP(lambda x: sqrt(x), 0.5)
f = NLP(lambda x: (x - sqrt(x), 1 - 0.5 / sqrt(x)), 0.5)

x_fp = g.fixpoint(**opts)
x_br = f.broyden(**opts)
x_nw = f.newton(**opts)
''' Example page 51 '''
example(51)
f = MCP(lambda x: (1.01 - (1 - x)**2, 2 * (1 - x)), 0, np.inf)
x = f.zero(0.0)  # ssmooth transform by default
print('Using', f.opts.transform, 'transformation,  x = ', x)
x = f.zero(0.0, transform='minmax')
print('Using', f.opts.transform, 'transformation, x = ', x,
      'FAILED TO CONVERGE')

# ==============================================================
''' Exercise 3.1 '''
exercise('3.1')


def newtroot(c):
    x = c / 2
    for it in range(150):
        fx = x**2 - c
        if abs(fx) < 1.e-9:
コード例 #4
0
    'linewidth': 1.0,
    'markersize': 6,
    'markerfacecolor': 'red',
    'markeredgecolor': 'red'
}

contour_options = {'levels': [0.0], 'colors': '0.25', 'linewidths': 0.5}

Q1, Q2 = np.meshgrid(q1, q2)
Z0 = np.reshape(z[0], (n, n), order='F')
Z1 = np.reshape(z[1], (n, n), order='F')

methods = ['newton', 'broyden']
cournot_problem.opts['maxit', 'maxsteps', 'all_x'] = 10, 0, True

qmin, qmax = 0.1, 1.3

fig = plt.figure()
for it in range(2):
    x = cournot_problem.zero(method=methods[it])
    demo.subplot(1, 2, it + 1, methods[it].capitalize() + "'s method", '$q_1$',
                 '$q_2$', [qmin, qmax], [qmin, qmax])
    plt.contour(Q1, Q2, Z0, **contour_options)
    plt.contour(Q1, Q2, Z1, **contour_options)
    plt.plot(*cournot_problem.x_sequence, **steps_options)

    demo.text(0.85, qmax, '$\pi_1 = 0$', 'left', 'top')
    demo.text(qmax, 0.55, '$\pi_2 = 0$', 'right', 'center')
plt.show()

demo.savefig([fig])
コード例 #5
0
contour_options = {'levels': [0.0],
                   'colors': '0.25',
                   'linewidths': 0.5}


Q1, Q2 = np.meshgrid(q1, q2)
Z0 = np.reshape(z[0], (n,n), order='F')
Z1 = np.reshape(z[1], (n,n), order='F')

methods = ['newton', 'broyden']
cournot_problem.opts['all_x'] =  True


fig = plt.figure()
for it in range(2):
    cournot_problem.zero(x0=q, method=methods[it])
    demo.subplot(1, 2, it + 1, methods[it].capitalize() + "'s method",
                 '$x$', '$y$', [min(q1), max(q1)], [min(q2), max(q2)])
    plt.contour(Q1, Q2, Z0, **contour_options)
    plt.contour(Q1, Q2, Z1, **contour_options)
    plt.plot(*cournot_problem.x_sequence, **steps_options)
    ax = plt.gca()
    ax.set_xticks([0.3, 0.7, 1.1])
    ax.set_yticks([0.4, 0.8, 1.2])

    demo.text(0.7, 0.45, '$f_1(x,y) = 0$', 'left', 'top',fs=12)
    demo.text(0.3, 0.55, '$f_2(x,y) = 0$', 'left', 'center',fs=12)
plt.show()

demo.savefig([fig])
コード例 #6
0
ファイル: demslv05.py プロジェクト: lizzyhuang/econ457
    'markersize': 6,
    'markerfacecolor': 'red',
    'markeredgecolor': 'red'
}

contour_options = {'levels': [0.0], 'colors': '0.25', 'linewidths': 0.5}

Q1, Q2 = np.meshgrid(q1, q2)
Z0 = np.reshape(z[0], (n, n), order='F')
Z1 = np.reshape(z[1], (n, n), order='F')

methods = ['newton', 'broyden']
cournot_problem.opts['all_x'] = True

fig = plt.figure()
for it in range(2):
    cournot_problem.zero(x0=q, method=methods[it])
    demo.subplot(1, 2, it + 1, methods[it].capitalize() + "'s method", '$x$',
                 '$y$', [min(q1), max(q1)], [min(q2), max(q2)])
    plt.contour(Q1, Q2, Z0, **contour_options)
    plt.contour(Q1, Q2, Z1, **contour_options)
    plt.plot(*cournot_problem.x_sequence, **steps_options)
    ax = plt.gca()
    ax.set_xticks([0.3, 0.7, 1.1])
    ax.set_yticks([0.4, 0.8, 1.2])

    demo.text(0.7, 0.45, '$f_1(x,y) = 0$', 'left', 'top', fs=12)
    demo.text(0.3, 0.55, '$f_2(x,y) = 0$', 'left', 'center', fs=12)
plt.show()

demo.savefig([fig])
コード例 #7
0
                 'markerfacecolor': 'red',
                 'markeredgecolor': 'red'}

contour_options = {'levels': [0.0],
                   'colors': '0.25',
                   'linewidths': 0.5}


Q1, Q2 = np.meshgrid(q1, q2)
Z0 = np.reshape(z[0], (n,n), order='F')
Z1 = np.reshape(z[1], (n,n), order='F')

methods = ['newton', 'broyden']
cournot_problem.opts['maxit', 'maxsteps', 'all_x'] = 10, 0, True

qmin, qmax = 0.1, 1.3

fig = plt.figure()
for it in range(2):
    x = cournot_problem.zero(method=methods[it])
    demo.subplot(1, 2, it + 1, methods[it].capitalize() + "'s method",
                 '$q_1$', '$q_2$', [qmin, qmax], [qmin, qmax])
    plt.contour(Q1, Q2, Z0, **contour_options)
    plt.contour(Q1, Q2, Z1, **contour_options)
    plt.plot(*cournot_problem.x_sequence, **steps_options)

    demo.text(0.85, qmax, '$\pi_1 = 0$', 'left', 'top')
    demo.text(qmax, 0.55, '$\pi_2 = 0$', 'right', 'center')
plt.show()

demo.savefig([fig])