rr_data47) print(concat_data.shape) file = open('concat_data.txt', "w") numpy.savetxt('concat_data.txt', concat_data, fmt='%.18e') ################################### 4 num_train_examp = 0.9 x_train, x_test = make_train_and_test_concat_data(concat_data, num_train_examp) ################################### 5 critical_times_set = find_critical_times(rr_data39, rr_data40, rr_data41, rr_data42, rr_data43, rr_data44, rr_data45, rr_data46, rr_data47) ###################################### 6 num_iter = 100 alpha = 1.2 reduce_alpha_coef = 0.2 target_voxel_ind = 3122 n5 = x_train.shape[1] t1 = x_train.shape[0]
c_back0 = concat_data for i in range(my_theta_mean.shape[0]): if i != target_voxel_ind: if -0.002 < my_theta_mean[i] < 0.002: c_back0[i, :] = 0 ################################### 4 num_train_examp = 0.9 x_train, x_test = make_train_and_test_concat_data(c_back0, num_train_examp) ################################### 5 critical_times_set = find_critical_times(rr_data27, rr_data28, rr_data29, rr_data30, rr_data31, rr_data32, rr_data33, rr_data34, rr_data35) ###################################### 6 num_iter = 100 alpha = 1.2 reduce_alpha_coef = 0.2 target_voxel_ind = 3122 n5 = x_train.shape[1] t1 = x_train.shape[0]