def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.ComplexBatchNorm2d if groups != 1 or base_width != 64: raise ValueError( 'BasicBlock only supports groups=1 and base_width=64') if dilation > 1: raise NotImplementedError( "Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.relu = nn.ComplexReLU() self.conv2 = conv3x3(planes, planes) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride
def __init__(self, in_channels, out_channels, kernel_size=3, upsampling=1): conv2d = nn.ComplexConv2d(in_channels, out_channels, kernel_size=kernel_size, padding=kernel_size // 2) upsampling = nn.ComplexUpsamplingBilinear2d( scale_factor=upsampling) if upsampling > 1 else nn.Identity() activation = nn.ComplexReLU() # Always super().__init__(conv2d, upsampling, activation)
def __init__( self, in_channels, out_channels, kernel_size, padding=0, stride=1, use_batchnorm=True, ): # if use_batchnorm == "inplace" and InPlaceABN is None: # raise RuntimeError( # "In order to use `use_batchnorm='inplace'` inplace_abn package must be installed. " # + "To install see: https://github.com/mapillary/inplace_abn" # ) conv = nn.ComplexConv2d( in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=not (use_batchnorm), ) relu = nn.ComplexReLU() if use_batchnorm == "inplace": # bn = InPlaceABN(out_channels, activation="leaky_relu", activation_param=0.0) # relu = nn.Identity() pass elif use_batchnorm and use_batchnorm != "inplace": bn = nn.ComplexBatchNorm2d(out_channels) else: bn = nn.Identity() super(Conv2dReLU, self).__init__(conv, bn, relu)
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(Bottleneck, self).__init__() if norm_layer is None: norm_layer = nn.ComplexBatchNorm2d width = int(planes * (base_width / 64.)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ComplexReLU() self.downsample = downsample self.stride = stride
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None): super(ResNet, self).__init__() if norm_layer is None: norm_layer = nn.ComplexBatchNorm2d self._norm_layer = norm_layer self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format( replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.conv1 = nn.ComplexConv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ComplexReLU() self.maxpool = nn.ComplexMaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]) self.avgpool = nn.ComplexAdaptiveAvgPool2d((1, 1)) self.fc = nn.ComplexLinear(512 * block.expansion, num_classes) #DEBUG: Can drop the following if it doesn't work for m in self.modules(): if isinstance(m, nn.ComplexConv2d): init.kaiming_normal_(m.conv_r.weight, mode='fan_out', nonlinearity='relu') init.kaiming_normal_(m.conv_i.weight, mode='fan_out', nonlinearity='relu') elif isinstance( m, (nn.ComplexBatchNorm2d) ): # , nn.GroupNorm)): # ComplexGroupNorm not yet implemented init.constant_(m.weight, 1) init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): init.constant_(m.bn2.weight, 0)