コード例 #1
0
def getResidualBlock(I, mode, filter_size, featmaps, activation, shortcut,
                     convArgs, bnArgs):
    """Get residual block."""
    if mode == "real":
        O = BatchNormalization(**bnArgs)(I)
    elif mode == "complex":
        O = ComplexBatchNormalization(**bnArgs)(I)
    elif mode == "quaternion":
        O = QuaternionBatchNormalization(**bnArgs)(I)
    O = Activation(activation)(O)
    if shortcut == 'regular':
        if mode == "real":
            O = Conv2D(featmaps, filter_size, **convArgs)(O)
        elif mode == "complex":
            O = ComplexConv2D(featmaps, filter_size, **convArgs)(O)
        elif mode == "quaternion":
            O = QuaternionConv2D(featmaps, filter_size, **convArgs)(O)
    elif shortcut == 'projection':
        if mode == "real":
            O = Conv2D(featmaps, filter_size, strides=(2, 2), **convArgs)(O)
        elif mode == "complex":
            O = ComplexConv2D(featmaps,
                              filter_size,
                              strides=(2, 2),
                              **convArgs)(O)
        elif mode == "quaternion":
            O = QuaternionConv2D(featmaps,
                                 filter_size,
                                 strides=(2, 2),
                                 **convArgs)(O)

    if mode == "real":
        O = BatchNormalization(**bnArgs)(O)
        O = Activation(activation)(O)
        O = Conv2D(featmaps, filter_size, **convArgs)(O)
    elif mode == "complex":
        O = ComplexBatchNormalization(**bnArgs)(O)
        O = Activation(activation)(O)
        O = ComplexConv2D(featmaps, filter_size, **convArgs)(O)
    elif mode == "quaternion":
        O = QuaternionBatchNormalization(**bnArgs)(O)
        O = Activation(activation)(O)
        O = QuaternionConv2D(featmaps, filter_size, **convArgs)(O)

    if shortcut == 'regular':
        O = Add()([O, I])
    elif shortcut == 'projection':
        if mode == "real":
            X = Conv2D(featmaps, (1, 1), strides=(2, 2), **convArgs)(I)
            O = Concatenate(1)([X, O])
        elif mode == "complex":
            X = ComplexConv2D(featmaps, (1, 1), strides=(2, 2), **convArgs)(I)
            O_real = Concatenate(1)([GetReal()(X), GetReal()(O)])
            O_imag = Concatenate(1)([GetImag()(X), GetImag()(O)])
            O = Concatenate(1)([O_real, O_imag])
        elif mode == "quaternion":
            X = QuaternionConv2D(featmaps, (1, 1), strides=(2, 2),
                                 **convArgs)(I)
            O_r = Concatenate(1)([GetR()(X), GetR()(O)])
            O_i = Concatenate(1)([GetI()(X), GetI()(O)])
            O_j = Concatenate(1)([GetJ()(X), GetJ()(O)])
            O_k = Concatenate(1)([GetK()(X), GetK()(O)])
            O = Concatenate(1)([O_r, O_i, O_j, O_k])

    return O
コード例 #2
0
def getModel(params):
    mode = params.mode
    n = params.num_blocks
    sf = params.start_filter
    activation = params.act
    dropout = params.dropout
    inputShape = (3, 93, 310)
    channelAxis = 1
    filsize = (3, 3)
    convArgs = {
        "padding": "same",
        "use_bias": False,
        "kernel_regularizer": l2(0.0001),
    }
    bnArgs = {
        "axis": channelAxis,
        "momentum": 0.9,
        "epsilon": 1e-04,
        "scale": False
    }

    convArgs.update({"kernel_initializer": params.init})

    # Create the vector channels
    R = Input(shape=inputShape)

    if mode != "quaternion":
        I = learnVectorBlock(R, 3, filsize, 'relu', bnArgs)
        O = concatenate([R, I], axis=channelAxis)
    else:
        I = learnVectorBlock(R, 3, filsize, 'relu', bnArgs)
        J = learnVectorBlock(R, 3, filsize, 'relu', bnArgs)
        K = learnVectorBlock(R, 3, filsize, 'relu', bnArgs)
        O = concatenate([R, I, J, K], axis=channelAxis)

    if mode == "real":
        O = Conv2D(sf, filsize, **convArgs)(O)
        O = BatchNormalization(**bnArgs)(O)
    elif mode == "complex":
        O = ComplexConv2D(sf, filsize, **convArgs)(O)
        O = ComplexBatchNormalization(**bnArgs)(O)
    else:
        O = QuaternionConv2D(sf, filsize, **convArgs)(O)
        O = QuaternionBatchNormalization(**bnArgs)(O)
    O = Activation(activation)(O)

    for i in range(n):
        O = getResidualBlock(O, mode, filsize, sf, activation, dropout,
                             'regular', convArgs, bnArgs)

    O = getResidualBlock(O, mode, filsize, sf, activation, dropout,
                         'projection', convArgs, bnArgs)

    for i in range(n - 1):
        O = getResidualBlock(O, mode, filsize, sf * 2, activation, dropout,
                             'regular', convArgs, bnArgs)

    O = getResidualBlock(O, mode, filsize, sf * 2, activation, dropout,
                         'projection', convArgs, bnArgs)

    for i in range(n - 1):
        O = getResidualBlock(O, mode, filsize, sf * 4, activation, dropout,
                             'regular', convArgs, bnArgs)

    # heatmap output
    O = Convolution2D(1, 1, activation='sigmoid')(O)

    model = Model(R, O)
    opt = SGD(lr=params.lr,
              momentum=params.momentum,
              decay=params.decay,
              nesterov=True,
              clipnorm=params.clipnorm)
    model.compile(opt, dice_coef_loss)
    return model
コード例 #3
0
def getModel(params):
    mode = params.mode
    n = params.num_blocks
    sf = params.start_filter
    dataset = params.dataset
    activation = params.act
    inputShape = (3, 32, 32)
    channelAxis = 1
    filsize = (3, 3)
    convArgs = {
    "padding": "same",
    "use_bias": False,
    "kernel_regularizer": l2(0.0001),
    }
    bnArgs = {
    "axis": channelAxis,
    "momentum": 0.9,
    "epsilon": 1e-04
    }

    convArgs.update({"kernel_initializer": params.init})

    # Create the vector channels
    R = Input(shape=inputShape)

    if mode != "quaternion":
        I = learnVectorBlock(R, 3, filsize, 'relu', bnArgs)
        O = concatenate([R, I], axis=channelAxis)
    else:
        I = learnVectorBlock(R, 3, filsize, 'relu', bnArgs)
        J = learnVectorBlock(R, 3, filsize, 'relu', bnArgs)
        K = learnVectorBlock(R, 3, filsize, 'relu', bnArgs)
        O = concatenate([R, I, J, K], axis=channelAxis)

    if mode == "real":
        O = Conv2D(sf, filsize, **convArgs)(O)
        O = BatchNormalization(**bnArgs)(O)
    elif mode == "complex":
        O = ComplexConv2D(sf, filsize, **convArgs)(O)
        O = ComplexBatchNormalization(**bnArgs)(O)
    else:
        O = QuaternionConv2D(sf, filsize, **convArgs)(O)
        O = QuaternionBatchNormalization(**bnArgs)(O)
    O = Activation(activation)(O)

    for i in range(n):
        O = getResidualBlock(O, mode, filsize, sf, activation, 'regular', convArgs, bnArgs)

    O = getResidualBlock(O, mode, filsize, sf, activation, 'projection', convArgs, bnArgs)

    for i in range(n-1):
        O = getResidualBlock(O, mode, filsize, sf*2, activation, 'regular', convArgs, bnArgs)

    O = getResidualBlock(O, mode, filsize, sf*2, activation, 'projection', convArgs, bnArgs)

    for i in range(n-1):
        O = getResidualBlock(O, mode, filsize, sf*4, activation, 'regular', convArgs, bnArgs)

    O = AveragePooling2D(pool_size=(8, 8))(O)

    # Flatten
    O = Flatten()(O)

    # Dense
    if dataset == 'cifar10':
        O = Dense(10, activation='softmax', kernel_regularizer=l2(0.0001))(O)
    elif dataset == 'cifar100':
        O = Dense(100, activation='softmax', kernel_regularizer=l2(0.0001))(O)

    model = Model(R, O)
    opt = SGD (lr = params.lr,
               momentum = params.momentum,
               decay = params.decay,
               nesterov = True,
               clipnorm = params.clipnorm)
    model.compile(opt, 'categorical_crossentropy', metrics=['accuracy'])
    return model
コード例 #4
0
def getModel(params):
    mode = params.mode
    n = params.num_blocks
    sf = params.start_filter
    dataset = params.dataset
    activation = params.act
    inputShape = (3, PICTURE_SIZE, PICTURE_SIZE)
    channelAxis = 1
    filsize = (3, 3)
    convArgs = {
        "padding": "same",
        "use_bias": False,
        "kernel_regularizer": l2(0.0001),
    }
    bnArgs = {"axis": channelAxis, "momentum": 0.9, "epsilon": 1e-04}

    convArgs.update({"kernel_initializer": params.init})

    # Create the vector channels
    R = Input(shape=inputShape)

    if mode != "quaternion":
        I = learnVectorBlock(R, 3, filsize, 'relu', bnArgs)
        O = concatenate([R, I], axis=channelAxis)
    else:
        I = learnVectorBlock(R, 3, filsize, 'relu', bnArgs)
        J = learnVectorBlock(R, 3, filsize, 'relu', bnArgs)
        K = learnVectorBlock(R, 3, filsize, 'relu', bnArgs)
        O = concatenate([R, I, J, K], axis=channelAxis)

    if mode == "real":
        O = Conv2D(sf, filsize, **convArgs)(O)
        O = BatchNormalization(**bnArgs)(O)
    elif mode == "complex":
        O = ComplexConv2D(sf, filsize, **convArgs)(O)
        O = ComplexBatchNormalization(**bnArgs)(O)
    else:
        O = QuaternionConv2D(64, (3, 3), **convArgs)(O)
        O = QuaternionBatchNormalization(**bnArgs)(O)
    O = MaxPooling2D(pool_size=(3, 3))(O)
    #conv2
    O = QuaternionConv2D(128, (3, 3), **convArgs)(O)
    O = QuaternionBatchNormalization(**bnArgs)(O)
    O = MaxPooling2D(pool_size=(3, 3))(O)
    #conv3
    O = QuaternionConv2D(256, (3, 3), **convArgs)(O)
    O = QuaternionBatchNormalization(**bnArgs)(O)
    O = MaxPooling2D(pool_size=(3, 3))(O)
    #conv4
    O = QuaternionConv2D(512, (3, 3), **convArgs)(O)
    O = QuaternionBatchNormalization(**bnArgs)(O)
    O = MaxPooling2D(pool_size=(3, 3))(O)
    #conv5
    O = QuaternionConv2D(16, (3, 3), **convArgs)(O)
    O = QuaternionBatchNormalization(**bnArgs)(O)
    O = MaxPooling2D(pool_size=(3, 3))(O)

    # Flatten
    O = Flatten()(O)

    # Dense
    O = Dense(1000, activation='relu', kernel_regularizer=l2(0.0001))(O)

    model = Model(R, O)
    return model