コード例 #1
0
def showNearestMHIs(testMoments, trainMoments, trainDirectoryNames, K):
    distance = np.zeros((1, trainMoments.shape[0]))
    nMHI = np.zeros((480, 640, K + 1))
    for i in range(0, trainMoments.shape[0]):
        distance[:, i] = np.sqrt(
            np.sum(
                np.divide(
                    np.power(
                        np.reshape(trainMoments[i, :],
                                   (-1, 1)) - np.reshape(testMoments,
                                                         (-1, 1)), 2),
                    np.reshape(np.nanvar(trainMoments, axis=0), (-1, 1)))))
    sorted_train_directory_names = np.reshape(
        trainDirectoryNames[np.argsort(distance)], (trainDirectoryNames.shape))
    for i in range(0, K + 1):
        nMHI[:, :, i] = computeMHI(sorted_train_directory_names[i, :][0])
    return nMHI
コード例 #2
0
def showNearestMHI(testMoments, trainMoments, train_dir,K):
    train_set_len = trainMoments.shape[0]
    variance = np.nanvar(trainMoments, axis=0).reshape(-1, 1)
    # variance=variance.reshape(20, 1)
    distance = np.zeros((1, train_set_len))
    testMoments = np.reshape(testMoments, (-1, 1))
    # variance=variance.reshape(20, 1)
    nearest_MHI=np.zeros((480,640,K+1))
    for i in range(0, train_set_len):
        distance[:,i] = normalized_euclidean(testMoments,trainMoments,variance,i)
    sorted_index = np.argsort(distance)
    #predictedAction = np.int(trainLabels[sorted_index][0])
    #sorted directory
    shape = train_dir.shape
    sorted_directory=train_dir[sorted_index].reshape(shape)

    #find k image
    for i in range (0,K+1):
        print("compute MHI for ", i ,"Nearest ")
        nearest_MHI[:,:,i]= computeMHI(np.str(sorted_directory[i,:][0]))

    return nearest_MHI
コード例 #3
0
ファイル: generateAllMHIs.py プロジェクト: aten2001/cs6476-4
import matplotlib.pyplot as plt
import numpy as np

from computeMHI import computeMHI
from data_paths import seqpaths


def display_mhi(mhi, action):
    plt.figure()
    plt.imshow(mhi, cmap='gray')
    plt.title(action)
    plt.xticks([])
    plt.yticks([])
    plt.savefig(action + "_mhi.png")
    plt.show()


if __name__ == '__main__':
    # generate all MHIs
    allMHIs_list = []
    for path in seqpaths:
        H = computeMHI(path)
        allMHIs_list.append(H)

    allMHIs = np.stack(allMHIs_list, axis=-1)

    # dump MHIs
    with open('allMHIs.npy', "wb") as f:
        pickle.dump(allMHIs, f)
コード例 #4
0
import cv2
import os
from predictAction import predictAction
from computeMHI import computeMHI
from huMoments import huMoments

basedir = './'
actions = ['botharms', 'crouch', 'leftarmup', 'punch', 'rightkick']
allMHIs_counter = 0
allMHIs = np.empty((480,640,20), dtype=np.float32)
allMoments = np.empty((20,7), dtype=np.float64)
for actionnum in range(len(actions)):
    subdirname = basedir + actions[actionnum] + '/'
    subdir = os.listdir(subdirname)
    for seqnum in range(len(subdir)):
        allMHIs[:,:,allMHIs_counter] = computeMHI(subdirname + subdir[seqnum])
        allMoments[allMHIs_counter,:] = huMoments(allMHIs[:,:,allMHIs_counter])
        allMHIs_counter += 1

allLabels = [i for i in xrange(1,6) for j in xrange(4)]
allLabels = np.array(allLabels)
#%%
actions = ['botharms', 'crouch', 'leftarmup', 'punch', 'rightkick']
#actions = ['leftarmup']
#trainMHI = np.empty((480,640,20), dtype=np.float32)
#trainMHI_counter = 0
np.save("huVectors", allMoments)
np.save("allMHIs", allMHIs)
allMoments = allMoments/np.linalg.norm(allMoments)
confusionMatrix = np.zeros((5,5))
for actionnum in range(len(actions)):
コード例 #5
0
ファイル: run.py プロジェクト: sbhal/ece5554_computer_vision
from huMoments import huMoments

basedir = './'


actions = ['botharms', 'crouch', 'leftarmup', 'punch', 'rightkick']
for actionnum in range(len(actions)):
    subdirname = basedir + actions[actionnum] + '/'
    subdir = os.listdir(subdirname)

    allMHIs = np.empty((480,640,20), dtype=np.float32)
    allMHIs_counter = 0
    for seqnum in range(len(subdir)):
    # cycle through all sequences for this action category
        allMHIs_counter = allMHIs_counter + 1
        allMHIs[:,:,allMHIs_counter] = computeMHI(subdirname + subdir[seqnum])
        cv2.imshow(actions[actionnum]+"- %d"%  seqnum, allMHIs[:,:,allMHIs_counter])
#    cv2.imshow("mask", motion_mask)
        if 0xFF & cv2.waitKey(1) == 27:
            break

#cv2.destroyAllWindows()



#%%

allHuMoments = np.empty((20,7), dtype=np.float32)
for i in range(allMHIs.shape[2]):
    allHuMoments[i,:] = huMoments(allMHIs[:,:,i])
#%%
コード例 #6
0
"""
Created on Thu Nov 28 18:11:16 2019

@author: songl
"""

from computeMHI import computeMHI
import matplotlib.pyplot as plt
import numpy as np
import os

MHI = computeMHI('./PS5_Data/botharms/botharms-up-p1-1')
plt.title('Both Arms')
plt.imshow(MHI)
plt.show()
plt.imsave('botharms-up-p1-1_MHI.png', MHI)
np.save('botharms-up-p1-1_MHI.npy', MHI)

MHI = computeMHI('./PS5_Data/crouch/crouch-p1-1')
plt.title('Crouch')
plt.imshow(MHI)
plt.show()
plt.imsave('crouch-p1-1_MHI.png', MHI)
np.save('crouch-p1-1_MHI.npy', MHI)

MHI = computeMHI('./PS5_Data/leftarmup/leftarm-up-p1-1')
plt.title('Left Arm Up')
plt.imshow(MHI)
plt.show()
plt.imsave('leftarm-up-p1-1_MHI.png', MHI)
np.save('leftarm-up-p1-1_MHI.npy', MHI)
コード例 #7
0
from huMoments import huMoments

basedir = './'

actions = ['botharms', 'crouch', 'leftarmup', 'punch', 'rightkick']

allMHIs = list()

for action in actions:
    subdirname = basedir + action + '/'
    subdirs = os.listdir(subdirname)

    for seq in subdirs:
        # cycle through all sequences for this action category
        directory = subdirname + seq
        mhi = computeMHI(directory)
        allMHIs.append(mhi)

allMHIs = np.stack(allMHIs, axis=2)
np.save('allMHIs.npy', allMHIs)
print 'saved MHIs'

allHus = list()

allMHIs = np.load('allMHIs.npy')
_, _, numSeqs = np.shape(allMHIs)
for i in range(numSeqs):
    mhi = allMHIs[:, :, i]
    huVec = huMoments(mhi)
    allHus.append(huVec)