(nu_no_age, bias_no_age, _) = cmpn.calc_seljak_warren_w_cut(1000, 0.75, cosmo) for (t, s) in enumerate(snaps): z = zs[t] finaldir = '{0}Desktop/age-clustering-data/snap{1}{2}/attempt1_sub_form_jp/'.format( home, s, snap_id) ##INPUT agelabel = 'Sub-Root-Form. Age' ##INPUT col_j = ['k', 'b', 'c', 'g', 'm', 'r'] ##Predefined colors for age_i nu_res = [] for age_i in range(0, 6): x = np.array([]) y = np.array([]) txt = np.array([], dtype=int) if age_i == 0: temp = cmpn.nu_eff(finaldir, (age_i, ), range(1, 7), cosmo, z, nu_no_age, bias_no_age) median_age = temp[5] mass_i_median_age = temp[0] else: nu_res.append( cmpn.nu_eff(finaldir, (age_i, ), range(1, 7), cosmo, z, nu_no_age, bias_no_age)) for (idx, x_temp) in enumerate(nu_res[-1][5]): if nu_res[-1][4][idx] > -100: idx2 = np.where( mass_i_median_age == nu_res[-1][0][idx])[0] x = np.append(x, (x_temp - median_age[idx2]) / median_age[idx2]) y = np.append(y, nu_res[-1][4][idx]) txt = np.append(txt, nu_res[-1][0][idx]) xtot.extend(x)
xtot = [] ytot = [] (nu_no_age, bias_no_age, _) = cmpn.calc_seljak_warren_w_cut(1000, 0.75, cosmo) for (t, s) in enumerate(snaps): z = zs[t] finaldir = "{0}Desktop/age-clustering-data/snap{1}{2}/attempt1_sub_form_jp/".format(home, s, snap_id) ##INPUT agelabel = "Sub-Root-Form. Age" ##INPUT col_j = ["k", "b", "c", "g", "m", "r"] ##Predefined colors for age_i nu_res = [] for age_i in range(0, 6): x = np.array([]) y = np.array([]) txt = np.array([], dtype=int) if age_i == 0: temp = cmpn.nu_eff(finaldir, (age_i,), range(1, 7), cosmo, z, nu_no_age, bias_no_age) median_age = temp[5] mass_i_median_age = temp[0] else: nu_res.append(cmpn.nu_eff(finaldir, (age_i,), range(1, 7), cosmo, z, nu_no_age, bias_no_age)) for (idx, x_temp) in enumerate(nu_res[-1][5]): if nu_res[-1][4][idx] > -100: idx2 = np.where(mass_i_median_age == nu_res[-1][0][idx])[0] x = np.append(x, (x_temp - median_age[idx2]) / median_age[idx2]) y = np.append(y, nu_res[-1][4][idx]) txt = np.append(txt, nu_res[-1][0][idx]) xtot.extend(x) ytot.extend(y) plt.plot(x, y, "*", color=col_j[age_i], label="{0}_{1}_{2}".format(agelabel, s, age_i)) # for (i, txt_i) in enumerate(txt): # plt.text(x[i], y[i], txt_i)
ytot = [] (nu_no_age, bias_no_age) = cmpn.calc_seljak_warren(1000, cosmo) for (t, s) in enumerate(snaps): z = zs[t] finaldir = '{0}Desktop/age-clustering-data/snap{1}/attempt1_sub_form_gao/'.format( home, s) ##INPUT agelabel = 'Sub-Root-Form. Age' ##INPUT col_j = ['k', 'b', 'c', 'g', 'm', 'r'] ##Predefined colors for age_i nu_res = [] for age_i in range(0, 6): x = np.array([]) y = np.array([]) txt = np.array([], dtype=int) if age_i == 0: temp = cmpn.nu_eff(finaldir, age_i, [1, 2, 3, 4, 5, 6, 7], cosmo, z, nu_no_age, bias_no_age) median_age = temp[5] mass_i_median_age = temp[0] else: nu_res.append( cmpn.nu_eff(finaldir, age_i, [1, 2, 3, 4, 5, 6, 7], cosmo, z, nu_no_age, bias_no_age)) for (idx, x_temp) in enumerate(nu_res[-1][5]): if nu_res[-1][4][idx] > -100: idx2 = np.where( mass_i_median_age == nu_res[-1][0][idx])[0] x = np.append(x, x_temp / median_age[idx2] - 1.) y = np.append( y, (nu_res[-1][4][idx] - nu_res[-1][2][idx]) / nu_res[-1][2][idx]) txt = np.append(txt, nu_res[-1][0][idx])
p1 = np.empty(len(snaps), dtype = np.object) #Properties for the mass-age sample across all redshifts best_fits = [] fit_age = np.empty(0, dtype = float) fit_nu = np.empty(0, dtype = float) fit_nueff = np.empty(0, dtype = float) fig = plt.figure() axi = (fig.add_subplot(131, projection = '3d'), fig.add_subplot(132, projection = '3d'), fig.add_subplot(133, projection = '3d')) for (t, s) in enumerate(snaps): #Step through redshift z = zs[t] pnt = z_points[t] finaldir = '{0}Desktop/age-clustering-data/snap{1}{2}/attempt1_sub_form_jp/'.format(home, s, snap_identifier) ##INPUT agelabel = 'Sub-Max-Form. Age' ##INPUT ##Label for age definition nu_res = cmpn.nu_eff(finaldir, range(0, 6), range(1, 8), cosmo, z, nu_no_age, bias_no_age) for age_i in range(1, 6): #Step through mass_i and enumerate the age tot_agei = np.empty(0, dtype= int) tot_massi = np.empty(0, dtype = int) tot_age = np.empty(0, dtype = float) tot_nueff = np.empty(0, dtype = float) tot_nu = np.empty(0, dtype = float) tot_z = np.empty(0, dtype = float) color = col_j[age_i] for mass_i in range(1, 8): idx = index_nu_eff(nu_res, [age_i], [mass_i])[0] if nu_res[4][idx] > -100: ##If there is a nu_eff calculated for this object idx2 = index_nu_eff(nu_res, [0], [mass_i])[0] #Calculated values for mass_i and age_i sample tot_agei = np.append(tot_agei, nu_res[1][idx]) tot_massi = np.append(tot_massi, nu_res[0][idx])
#Properties for the mass-age sample across all redshifts best_fits = [] fit_age = np.empty(0, dtype=float) fit_nu = np.empty(0, dtype=float) fit_nueff = np.empty(0, dtype=float) fig = plt.figure() axi = (fig.add_subplot(131, projection='3d'), fig.add_subplot(132, projection='3d'), fig.add_subplot(133, projection='3d')) for (t, s) in enumerate(snaps): #Step through redshift z = zs[t] pnt = z_points[t] finaldir = '{0}Desktop/age-clustering-data/snap{1}{2}/attempt1_sub_form_jp/'.format( home, s, snap_identifier) ##INPUT agelabel = 'Sub-Max-Form. Age' ##INPUT ##Label for age definition nu_res = cmpn.nu_eff(finaldir, range(0, 6), range(1, 8), cosmo, z, nu_no_age, bias_no_age) for age_i in range(1, 6): #Step through mass_i and enumerate the age tot_agei = np.empty(0, dtype=int) tot_massi = np.empty(0, dtype=int) tot_age = np.empty(0, dtype=float) tot_nueff = np.empty(0, dtype=float) tot_nu = np.empty(0, dtype=float) tot_z = np.empty(0, dtype=float) color = col_j[age_i] for mass_i in range(1, 8): idx = index_nu_eff(nu_res, [age_i], [mass_i])[0] if nu_res[4][ idx] > -100: ##If there is a nu_eff calculated for this object idx2 = index_nu_eff(nu_res, [0], [mass_i])[0] #Calculated values for mass_i and age_i sample tot_agei = np.append(tot_agei, nu_res[1][idx])
xtot = [] ytot = [] (nu_no_age, bias_no_age) = cmpn.calc_seljak_warren(1000, cosmo) for (t, s) in enumerate(snaps): z = zs[t] finaldir = '{0}Desktop/age-clustering-data/snap{1}/attempt1_sub_form_gao/'.format(home, s) ##INPUT agelabel = 'Sub-Root-Form. Age' ##INPUT col_j = ['k', 'b', 'c', 'g', 'm', 'r'] ##Predefined colors for age_i nu_res = [] for age_i in range(0,6): x = np.array([]) y = np.array([]) txt = np.array([],dtype = int) if age_i == 0: temp = cmpn.nu_eff(finaldir, age_i, [1, 2, 3, 4, 5, 6, 7], cosmo, z, nu_no_age, bias_no_age) median_age = temp[5] mass_i_median_age = temp[0] else: nu_res.append(cmpn.nu_eff(finaldir, age_i, [1, 2, 3, 4, 5, 6, 7], cosmo, z, nu_no_age, bias_no_age)) for (idx, x_temp) in enumerate(nu_res[-1][5]): if nu_res[-1][4][idx] > -100: idx2 = np.where(mass_i_median_age == nu_res[-1][0][idx])[0] x = np.append(x, x_temp / median_age[idx2] - 1.) y = np.append(y, (nu_res[-1][4][idx] - nu_res[-1][2][idx]) / nu_res[-1][2][idx]) txt = np.append(txt, nu_res[-1][0][idx]) xtot.extend(x) ytot.extend(y) plt.plot(x, y, '+', color = col_j[age_i], label = '{0}_{1}_{2}'.format(agelabel, s, age_i)) for (i, txt_i) in enumerate(txt):
xtot = [] ytot = [] (nu_no_age, bias_no_age, _) = calc_seljak_warren_w_cut(1000, 0.75, cosmo) for (t, s) in enumerate(snaps): z = zs[t] finaldir = '{0}Desktop/age-clustering-data/snap{1}{2}/attempt1_sub_form_jp/'.format(home, s, suffix) ##INPUT agelabel = 'Sub-Max-Form. Age' ##INPUT col_j = ['k', 'b', 'c', 'g', 'm', 'r'] ##Predefined colors for age_i nu_res = [] for age_i in range(0,6): x = np.array([]) y = np.array([]) txt = np.array([],dtype = int) if age_i == 0: temp = nu_eff(finaldir, (age_i,), range(1, 9), cosmo, z, nu_no_age, bias_no_age) median_age = temp[5] mass_i_median_age = temp[0] else: nu_res.append(nu_eff(finaldir, (age_i,), range(1, 9), cosmo, z, nu_no_age, bias_no_age)) for (idx, x_temp) in enumerate(nu_res[-1][5]): idx2 = np.where(mass_i_median_age == nu_res[-1][0][idx])[0] x = np.append(x, (x_temp - median_age[idx2]) / median_age[idx2]) y = np.append(y, nu_res[-1][2][idx]) txt = np.append(txt, nu_res[-1][0][idx]) xtot.extend(x) ytot.extend(y) plt.plot(x, y, '+', color = col_j[age_i], label = '{0}_{1}_{2}'.format(agelabel, s, age_i)) # for (i, txt_i) in enumerate(txt): # plt.text(x[i], y[i], txt_i)
ytot = [] (nu_no_age, bias_no_age, _) = calc_seljak_warren_w_cut(1000, 0.75, cosmo) for (t, s) in enumerate(snaps): z = zs[t] finaldir = '{0}Desktop/age-clustering-data/snap{1}{2}/attempt1_sub_form_jp/'.format( home, s, suffix) ##INPUT agelabel = 'Sub-Max-Form. Age' ##INPUT col_j = ['k', 'b', 'c', 'g', 'm', 'r'] ##Predefined colors for age_i nu_res = [] for age_i in range(0, 6): x = np.array([]) y = np.array([]) txt = np.array([], dtype=int) if age_i == 0: temp = nu_eff(finaldir, (age_i, ), range(1, 9), cosmo, z, nu_no_age, bias_no_age) median_age = temp[5] mass_i_median_age = temp[0] else: nu_res.append( nu_eff(finaldir, (age_i, ), range(1, 9), cosmo, z, nu_no_age, bias_no_age)) for (idx, x_temp) in enumerate(nu_res[-1][5]): idx2 = np.where(mass_i_median_age == nu_res[-1][0][idx])[0] x = np.append(x, (x_temp - median_age[idx2]) / median_age[idx2]) y = np.append(y, nu_res[-1][2][idx]) txt = np.append(txt, nu_res[-1][0][idx]) xtot.extend(x) ytot.extend(y) plt.plot(x,