コード例 #1
0
ファイル: all.py プロジェクト: Ohohcakester/cs4246-project
def computeDensity(df, focusPoints, level=1):
    """
    Computes the predicted density for a list of focus points for a level
    ---
    df: Output dataframe from bayes step
        ['TIMESTAMP', 'Z', MU', 'VAR']
        where 'MU' and 'VAR' both contains series of 3-tuples
    focusPoints: list of focus points
        [(a, b), (c, d), (e, f)] where a through f are floats
    level: integer 0 or 1 representing floor2 or floor18
    ---
    Returns: dict {timestamp: densityDistribution}
    Note: to query, just densityDistribution.query(point)
    """
    print 'COMPUTING PREDICTED DENSITY'
    print 'Reference points = ' + str(focusPoints)
    print 'mazeName = ' + str(getMazeName(level))
    return computedensities.compute(getMazeName(level), focusPoints, df, quiet=True)
コード例 #2
0
ファイル: all.py プロジェクト: Ohohcakester/cs4246-project
def computeDensity(df, focusPoints, level=1):
    """
    Computes the predicted density for a list of focus points for a level
    ---
    df: Output dataframe from bayes step
        ['TIMESTAMP', 'Z', MU', 'VAR']
        where 'MU' and 'VAR' both contains series of 3-tuples
    focusPoints: list of focus points
        [(a, b), (c, d), (e, f)] where a through f are floats
    level: integer 0 or 1 representing floor2 or floor18
    ---
    Returns: dict {timestamp: densityDistribution}
    Note: to query, just densityDistribution.query(point)
    """
    print 'COMPUTING PREDICTED DENSITY'
    print 'Reference points = ' + str(focusPoints)
    print 'mazeName = ' + str(getMazeName(level))
    return computedensities.compute(getMazeName(level),
                                    focusPoints,
                                    df,
                                    quiet=True)
コード例 #3
0
ファイル: bayes.py プロジェクト: Ohohcakester/cs4246-project
    return result_df


def predictGPonFile(fileName):
    df = pd.read_csv(fileName+'_A.csv', converters={"SHORTEST_PATHS": ast.literal_eval})
    testTimes = pd.read_csv(fileName+'_B.csv')
    result_df = predictGP(df, testTimes)
    result_df.to_csv(fileName+'_OUT.csv')


if __name__ == '__main__':
    if len(sys.argv) > 1:
        predictGPonFile(sys.argv[1])
        quit()

    df = pd.read_csv('testGP.csv')
    testTimes = pd.read_csv('test_times.csv')
    df['SHORTEST_PATHS'] = df['SHORTEST_PATHS'].str.split(',')

    result = predictGP(df, testTimes)
    import computedensities
    densityDistribution = computedensities.compute('floor18map',
                                                   [(8,8), (89,60), (55,5)],
                                                   result)
    print densityDistribution

    #userID = df['USER'][0]
    #result = predictGP(df[df['USER'] == userID])

    #print result
コード例 #4
0
ファイル: bayes.py プロジェクト: Ohohcakester/cs4246-project
def predictGPonFile(fileName):
    df = pd.read_csv(fileName + '_A.csv',
                     converters={"SHORTEST_PATHS": ast.literal_eval})
    testTimes = pd.read_csv(fileName + '_B.csv')
    result_df = predictGP(df, testTimes)
    result_df.to_csv(fileName + '_OUT.csv')


if __name__ == '__main__':
    if len(sys.argv) > 1:
        predictGPonFile(sys.argv[1])
        quit()

    df = pd.read_csv('testGP.csv')
    testTimes = pd.read_csv('test_times.csv')
    df['SHORTEST_PATHS'] = df['SHORTEST_PATHS'].str.split(',')

    result = predictGP(df, testTimes)
    import computedensities
    densityDistribution = computedensities.compute('floor18map', [(8, 8),
                                                                  (89, 60),
                                                                  (55, 5)],
                                                   result)
    print densityDistribution

    #userID = df['USER'][0]
    #result = predictGP(df[df['USER'] == userID])

    #print result