コード例 #1
0
def main():
    parser = argparse.ArgumentParser(description='Text Recognition Training')
    parser.add_argument('exp', type=str)
    parser.add_argument('--resume', type=str, help='Resume from checkpoint')
    parser.add_argument('--image_path', type=str, help='image path')
    parser.add_argument('--result_dir', type=str, default='./demo_results/', help='path to save results')
    parser.add_argument('--data', type=str,
                        help='The name of dataloader which will be evaluated on.')
    parser.add_argument('--image_short_side', type=int, default=736,
                        help='The threshold to replace it in the representers')
    parser.add_argument('--thresh', type=float,
                        help='The threshold to replace it in the representers')
    parser.add_argument('--box_thresh', type=float, default=0.6,
                        help='The threshold to replace it in the representers')
    parser.add_argument('--visualize', action='store_true',
                        help='visualize maps in tensorboard')
    parser.add_argument('--resize', action='store_true',
                        help='resize')
    parser.add_argument('--polygon', action='store_true',
                        help='output polygons if true')
    parser.add_argument('--eager', '--eager_show', action='store_true', dest='eager_show',
                        help='Show iamges eagerly')

    args = parser.parse_args()
    args = vars(args)
    args = {k: v for k, v in args.items() if v is not None}

    conf = Config()
    experiment_args = conf.compile(conf.load(args['exp']))['Experiment']
    experiment_args.update(cmd=args)
    experiment = Configurable.construct_class_from_config(experiment_args)

    Demo(experiment, experiment_args, cmd=args).inference(args['image_path'], args['visualize'])
コード例 #2
0
def main():
    parser = argparse.ArgumentParser(description='Text Recognition Training')
    parser.add_argument('--exp', type=str, default=exp)
    parser.add_argument('--resume', type=str, help='Resume from checkpoint', default=ckpt_path)
    parser.add_argument('--result_dir', type=str, default='./demo_results/', help='path to save results')
    parser.add_argument('--data', type=str,
                        help='The name of dataloader which will be evaluated on.')
    parser.add_argument('--image_short_side', type=int, default=img_short_side,
                        help='The threshold to replace it in the representers')
    parser.add_argument('--thresh', type=float,
                        help='The threshold to replace it in the representers')
    parser.add_argument('--box_thresh', type=float, default=detector_box_thres,
                        help='The threshold to replace it in the representers')
    parser.add_argument('--resize', action='store_true', help='resize')
    parser.add_argument('--visualize', default=visualize, help='visualize maps in tensorboard')
    parser.add_argument('--polygon', help='output polygons if true', default=polygon)
    parser.add_argument('--eager', '--eager_show', action='store_true', dest='eager_show',
                        help='Show iamges eagerly')

    args = parser.parse_args()
    args = vars(args)
    args = {k: v for k, v in args.items() if v is not None}

    conf = Config()
    experiment_args = conf.compile(conf.load(args['exp']))['Experiment']
    experiment_args.update(cmd=args)
    experiment = Configurable.construct_class_from_config(experiment_args)

    detector = Demo(experiment, experiment_args, gpu=gpu_test, cmd=args)
    begin = time.time()
    detector.inference2(img_path, args['visualize'])
    end = time.time()
    print ( 'Exe time:',end-begin,'seconds')
コード例 #3
0
def main():
    parser = argparse.ArgumentParser(description='Text Recognition Training')
    parser.add_argument('exp', type=str)
    parser.add_argument('--name', type=str)
    parser.add_argument('--batch_size', type=int, help='Batch size for training')
    parser.add_argument('--resume', type=str, help='Resume from checkpoint')
    parser.add_argument('--epochs', type=int, help='Number of training epochs')
    parser.add_argument('--num_workers', type=int, help='Number of dataloader workers')
    parser.add_argument('--start_iter', type=int,
                        help='Begin counting iterations starting from this value (should be used with resume)')
    parser.add_argument('--start_epoch', type=int,
                        help='Begin counting epoch starting from this value (should be used with resume)')
    parser.add_argument('--max_size', type=int, help='max length of label')
    parser.add_argument('--lr', type=float, help='initial learning rate')
    parser.add_argument('--optimizer', type=str, help='The optimizer want to use')
    parser.add_argument('--thresh', type=float, help='The threshold to replace it in the representers')
    parser.add_argument('--verbose', action='store_true', help='show verbose info')
    parser.add_argument('--visualize', action='store_true', help='visualize maps in tensorboard')
    parser.add_argument('--force_reload', action='store_true', dest='force_reload', help='Force reload data meta')
    parser.add_argument('--no-force_reload', action='store_false', dest='force_reload', help='Force reload data meta')
    parser.add_argument('--validate', action='store_true', dest='validate', help='Validate during training')
    parser.add_argument('--no-validate', action='store_false', dest='validate', help='Validate during training')
    parser.add_argument('--print-config-only', action='store_true', help='print config without actual training')
    parser.add_argument('--debug', action='store_true', dest='debug',
                        help='Run with debug mode, which hacks dataset num_samples to toy number')
    parser.add_argument('--no-debug', action='store_false', dest='debug', help='Run without debug mode')
    parser.add_argument('--benchmark', action='store_true', dest='benchmark', help='Open cudnn benchmark mode')
    parser.add_argument('--no-benchmark', action='store_false', dest='benchmark', help='Turn cudnn benchmark mode off')
    parser.add_argument('-d', '--distributed', action='store_true', dest='distributed', help='Use distributed training')
    parser.add_argument('--local_rank', dest='local_rank', default=0, type=int, help='Use distributed training')
    parser.add_argument('-g', '--num_gpus', dest='num_gpus', default=4, type=int, help='The number of accessible gpus')
    parser.set_defaults(debug=False)
    parser.set_defaults(benchmark=True)

    args = parser.parse_args()
    args = vars(args)
    args = {k: v for k, v in args.items() if v is not None}

    # Torch分布式训练,据称即使是单电脑多卡,也比data_parallel快,使用nccl后端(需要部署)
    if args['distributed']:
        torch.cuda.set_device(args['local_rank'])
        torch.distributed.init_process_group(backend='nccl', init_method='env://')

    conf = Config()
    # 通过yaml文件,生成对应的配置参数,experiment里包含了name,class,structure,train,validation,logger,evaluation(=valid)信息
    experiment_args = conf.compile(conf.load(args['exp']))['Experiment']
    # 使用命令行参数覆盖一些默认参数,也就是命令行参数优先级高于默认参数
    experiment_args.update(cmd=args)
    # 通过参数表构筑实验,experiment里包含distributed,local_rank(分布式时有用),evaluation(训练时为空),logger,states,structure,train,validation
    experiment = Configurable.construct_class_from_config(experiment_args)

    if not args['print_config_only']:
        torch.backends.cudnn.benchmark = args['benchmark']
        # 构筑训练器
        trainer = Trainer(experiment)
        # 开始训练
        trainer.train()
コード例 #4
0
def main():
    parser = argparse.ArgumentParser(description='Text Recognition Training')
    parser.add_argument('--exp', type=str, default=config_file)
    parser.add_argument('--name', type=str, default=training_dir)
    parser.add_argument('--batch_size', type=int, help='Batch size for training')
    parser.add_argument('--resume', type=str, default=resume_ckpt, help='Resume from checkpoint')
    parser.add_argument('--epochs', type=int, help='Number of training epochs')
    parser.add_argument('--num_workers', type=int, help='Number of dataloader workers')
    parser.add_argument('--start_iter', type=int,
                        help='Begin counting iterations starting from this value (should be used with resume)')
    parser.add_argument('--start_epoch', type=int,
                        help='Begin counting epoch starting from this value (should be used with resume)')
    parser.add_argument('--max_size', type=int, help='max length of label')
    parser.add_argument('--lr', type=float, help='initial learning rate')
    parser.add_argument('--optimizer', type=str, help='The optimizer want to use')
    parser.add_argument('--thresh', type=float, help='The threshold to replace it in the representers')
    parser.add_argument('--verbose', action='store_true', help='show verbose info')
    parser.add_argument('--visualize', action='store_true', help='visualize maps in tensorboard')
    parser.add_argument('--force_reload', action='store_true', dest='force_reload', help='Force reload data meta')
    parser.add_argument('--no-force_reload', action='store_false', dest='force_reload', help='Force reload data meta')
    parser.add_argument('--validate', action='store_true', dest='validate', help='Validate during training')
    parser.add_argument('--no-validate', action='store_false', dest='validate', help='Validate during training')
    parser.add_argument('--print-config-only', action='store_true', help='print config without actual training')
    parser.add_argument('--debug', action='store_true', dest='debug',
                        help='Run with debug mode, which hacks dataset num_samples to toy number')
    parser.add_argument('--no-debug', action='store_false', dest='debug', help='Run without debug mode')
    parser.add_argument('--benchmark', action='store_true', dest='benchmark', help='Open cudnn benchmark mode')
    parser.add_argument('--no-benchmark', action='store_false', dest='benchmark', help='Turn cudnn benchmark mode off')
    parser.add_argument('-d', '--distributed', action='store_true', dest='distributed', help='Use distributed training')
    parser.add_argument('--local_rank', dest='local_rank', default=0, type=int, help='Use distributed training')
    parser.add_argument('-gpu_num', '--num_gpus', dest='num_gpus', default=1, type=int,
                        help='The number of accessible gpus')
    parser.set_defaults(debug=False)
    parser.set_defaults(benchmark=True)

    args = parser.parse_args()
    args = vars(args)
    args = {k: v for k, v in args.items() if v is not None}

    if args['distributed']:
        torch.cuda.set_device(args['local_rank'])
        torch.distributed.init_process_group(backend='nccl', init_method='env://')

    conf = Config()
    experiment_args = conf.compile(conf.load(args['exp']))['Experiment']
    experiment_args.update(cmd=args)
    experiment = Configurable.construct_class_from_config(experiment_args)

    if not args['print_config_only']:
        torch.backends.cudnn.benchmark = args['benchmark']
        trainer = Trainer(experiment)
        trainer.train()
コード例 #5
0
def main():
    parser = argparse.ArgumentParser(description='Text Recognition Training')
    parser.add_argument('exp', type=str)
    parser.add_argument('--resume', type=str, help='Resume from checkpoint')
    parser.add_argument('--image_path', type=str, help='image path')
    parser.add_argument('--result_dir', type=str, default='./demo_results/', help='path to save results')
    parser.add_argument('--data', type=str,
                        help='The name of dataloader which will be evaluated on.')
    parser.add_argument('--image_short_side', type=int, default=736,
                        help='The threshold to replace it in the representers')
    parser.add_argument('--thresh', type=float,
                        help='The threshold to replace it in the representers')
    parser.add_argument('--box_thresh', type=float, default=0.6,
                        help='The threshold to replace it in the representers')
    parser.add_argument('--visualize', action='store_true',
                        help='visualize maps in tensorboard')
    parser.add_argument('--resize', action='store_true',
                        help='resize')
    parser.add_argument('--polygon', action='store_true',
                        help='output polygons if true')
    parser.add_argument('--eager', '--eager_show', action='store_true', dest='eager_show',
                        help='Show images eagerly')
    parser.add_argument('--sort_boxes', action='store_true', dest='sort_boxes',
                        help='Sort boxes for further works')

    args = parser.parse_args()
    args = vars(args)
    args = {k: v for k, v in args.items() if v is not None}

    conf = Config()
    experiment_args = conf.compile(conf.load(args['exp']))['Experiment']
    experiment_args.update(cmd=args)
    # Delete train settings, prevent of reading training dataset
    experiment_args.pop('train')
    experiment_args.pop('evaluation')
    experiment_args.pop('validation')
    experiment = Configurable.construct_class_from_config(experiment_args)

    demo_handler = Demo(experiment, experiment_args, cmd=args)

    if os.path.isdir(args['image_path']):
        img_cnt = len(os.listdir(args['image_path']))
        for idx, img in enumerate(os.listdir(args['image_path'])):
            if os.path.splitext(img)[1].lower() not in ['.jpg', '.tif', '.png', '.jpeg']:
                continue
            t = time.time()
            demo_handler.inference(os.path.join(args['image_path'], img), args['visualize'])
            print("{}/{} elapsed time : {:.4f}s".format(idx + 1, img_cnt, time.time() - t))
    else:
        t = time.time()
        demo_handler.inference(args['image_path'], args['visualize'])
        print("elapsed time : {}s".format(time.time() - t))
コード例 #6
0
ファイル: convert_to_onnx.py プロジェクト: npanguyen412/DB
def main():
    parser = argparse.ArgumentParser(description='Convert model to ONNX')
    parser.add_argument('exp', type=str)
    parser.add_argument('resume', type=str, help='Resume from checkpoint')
    parser.add_argument('output', type=str, help='Output ONNX path')

    args = parser.parse_args()
    args = vars(args)
    args = {k: v for k, v in args.items() if v is not None}

    conf = Config()
    experiment_args = conf.compile(conf.load(args['exp']))['Experiment']
    experiment_args.update(cmd=args)
    experiment = Configurable.construct_class_from_config(experiment_args)

    Demo(experiment, experiment_args, cmd=args).inference()
コード例 #7
0
ファイル: service_inference.py プロジェクト: PKQ1688/DB
    def __init__(self, args=params):
        self.RGB_MEAN = np.array([122.67891434, 116.66876762, 104.00698793])

        conf = Config()
        experiment_args = conf.compile(conf.load(args['exp']))['Experiment']
        experiment_args.update(cmd=args)
        self.experiment = Configurable.construct_class_from_config(
            experiment_args)
        self.experiment.load('evaluation', **args)
        self.args = args
        self.structure = self.experiment.structure
        self.model_path = args['resume']

        self.init_torch_tensor()
        self.model = self.init_model()
        self.resume(self.model, self.model_path)
        self.model.eval()
コード例 #8
0
ファイル: eval.py プロジェクト: phamdan/DB-master
def main():
    parser = argparse.ArgumentParser(description='Text Recognition Training')
    parser.add_argument('exp', type=str)
    parser.add_argument('--batch_size',
                        type=int,
                        help='Batch size for training')
    parser.add_argument('--resume', type=str, help='Resume from checkpoint')
    parser.add_argument('--result_dir',
                        type=str,
                        default='./results/',
                        help='path to save results')
    parser.add_argument('--epochs', type=int, help='Number of training epochs')
    parser.add_argument(
        '--start_iter',
        type=int,
        help=
        'Begin counting iterations starting from this value (should be used with resume)'
    )
    parser.add_argument(
        '--start_epoch',
        type=int,
        help=
        'Begin counting epoch starting from this value (should be used with resume)'
    )
    parser.add_argument('--max_size', type=int, help='max length of label')
    parser.add_argument(
        '--data',
        type=str,
        help='The name of dataloader which will be evaluated on.')
    parser.add_argument('--thresh',
                        type=float,
                        help='The threshold to replace it in the representers')
    parser.add_argument('--box_thresh',
                        type=float,
                        default=0.6,
                        help='The threshold to replace it in the representers')
    parser.add_argument('--verbose',
                        action='store_true',
                        help='show verbose info')
    parser.add_argument('--no-verbose',
                        action='store_true',
                        help='show verbose info')
    parser.add_argument('--visualize',
                        action='store_true',
                        help='visualize maps in tensorboard')
    parser.add_argument('--resize', action='store_true', help='resize')
    parser.add_argument('--polygon',
                        action='store_true',
                        help='output polygons if true')
    parser.add_argument('--eager',
                        '--eager_show',
                        action='store_true',
                        dest='eager_show',
                        help='Show iamges eagerly')
    parser.add_argument('--speed',
                        action='store_true',
                        dest='test_speed',
                        help='Test speed only')
    parser.add_argument(
        '--dest',
        type=str,
        help='Specify which prediction will be used for decoding.')
    parser.add_argument(
        '--debug',
        action='store_true',
        dest='debug',
        help=
        'Run with debug mode, which hacks dataset num_samples to toy number')
    parser.add_argument('--no-debug',
                        action='store_false',
                        dest='debug',
                        help='Run without debug mode')
    parser.add_argument('-d',
                        '--distributed',
                        action='store_true',
                        dest='distributed',
                        help='Use distributed training')
    parser.add_argument('--local_rank',
                        dest='local_rank',
                        default=0,
                        type=int,
                        help='Use distributed training')
    parser.add_argument('-g',
                        '--num_gpus',
                        dest='num_gpus',
                        default=1,
                        type=int,
                        help='The number of accessible gpus')
    parser.set_defaults(debug=False, verbose=False)

    args = parser.parse_args()
    args = vars(args)
    args = {k: v for k, v in args.items() if v is not None}

    conf = Config()
    experiment_args = conf.compile(conf.load(args['exp']))['Experiment']
    experiment_args.update(cmd=args)
    experiment = Configurable.construct_class_from_config(experiment_args)

    Eval(experiment, experiment_args, cmd=args,
         verbose=args['verbose']).eval(args['visualize'])
コード例 #9
0
ファイル: paddle_db_test.py プロジェクト: chenlj-alt/DB
        tensor = torch.from_numpy(img).float()

        tensor = tensor.to("cuda:0")
        print(tensor.shape)
        batch = dict()
        batch['image'] = tensor

        # ===> model predict
        pred = model.forward(batch, training=False)
        return pred


if __name__ == "__main__":
    config = "/share_sdb/clj/DB2/DB/experiments/seg_detector/ic15_resnet_vd_18.yaml"
    conf = Config()
    experiment_args = conf.compile(conf.load(config))['Experiment']

    image_path = "/share_sdb/clj/paddle/img_10.jpg"

    args = {}
    args["model_path"] = ""
    args["image_short_side"] = ""
    args["result_dir"] = "/share_sdb/clj/DB/demo_results"
    args["polygon"] = False
    args["paddle_model_path"] = "/share_sdb/clj/paddle/models/ch_ppocr_server_v1.1_det_train/best_accuracy"

    experiment_args.update(cmd=args)
    experiment = Configurable.construct_class_from_config(experiment_args)

    pred = Demo(experiment, args).inference(image_path)
    print(pred)