コード例 #1
0
ファイル: macro.py プロジェクト: PeinYu/stock
def get_loan_rate():
    """
        获取贷款利率数据
    Return
    --------
    DataFrame
        date :执行日期
        loan_type :存款种类
        rate:利率(%)
    """
    rdint = vs.random()
    request = Request(vs.MACRO_URL%(vs.P_TYPE['http'], vs.DOMAINS['sina'],
                                    rdint, vs.MACRO_TYPE[2], 3, 800,
                                    rdint))
    text = urlopen(request, timeout=10).read()
    text = text.decode('gbk')
    regSym = re.compile(r'\,count:(.*?)\}')
    datastr = regSym.findall(text)
    datastr = datastr[0]
    datastr = datastr.split('data:')[1]
    js = json.loads(datastr)
    df = pd.DataFrame(js, columns=vs.LOAN_COLS)
    for i in df.columns:
        df[i] = df[i].apply(lambda x:np.where(x is None, '--', x))
    return df
コード例 #2
0
ファイル: macro.py プロジェクト: PeinYu/stock
def get_gdp_year():
    """
        获取年度国内生产总值数据
    Return
    --------
    DataFrame
        year :统计年度
        gdp :国内生产总值(亿元)
        pc_gdp :人均国内生产总值(元)
        gnp :国民生产总值(亿元)
        pi :第一产业(亿元)
        si :第二产业(亿元)
        industry :工业(亿元)
        cons_industry :建筑业(亿元)
        ti :第三产业(亿元)
        trans_industry :交通运输仓储邮电通信业(亿元)
        lbdy :批发零售贸易及餐饮业(亿元)
    """
    rdint = vs.random()
    request = Request(vs.MACRO_URL%(vs.P_TYPE['http'], vs.DOMAINS['sina'],
                                    rdint, vs.MACRO_TYPE[0], 0, 70,
                                    rdint))
    text = urlopen(request, timeout=10).read()
    text = text.decode('gbk') if ct.PY3 else text
    regSym = re.compile(r'\,count:(.*?)\}')
    datastr = regSym.findall(text)
    datastr = datastr[0]
    datastr = datastr.split('data:')[1]
    datastr = datastr.replace('"', '').replace('null', '0')
    js = json.loads(datastr)
    df = pd.DataFrame(js, columns=vs.GDP_YEAR_COLS)
    df[df==0] = np.NaN
    return df
コード例 #3
0
ファイル: macro.py プロジェクト: PeinYu/stock
def get_rrr():
    """
        获取存款准备金率数据
    Return
    --------
    DataFrame
        date :变动日期
        before :调整前存款准备金率(%)
        now:调整后存款准备金率(%)
        changed:调整幅度(%)
    """
    rdint = vs.random()
    request = Request(vs.MACRO_URL%(vs.P_TYPE['http'], vs.DOMAINS['sina'],
                                    rdint, vs.MACRO_TYPE[2], 4, 100,
                                    rdint))
    text = urlopen(request, timeout=10).read()
    text = text.decode('gbk')
    regSym = re.compile(r'\,count:(.*?)\}')
    datastr = regSym.findall(text)
    datastr = datastr[0]
    datastr = datastr.split('data:')[1]
    js = json.loads(datastr)
    df = pd.DataFrame(js, columns=vs.RRR_COLS)
    for i in df.columns:
        df[i] = df[i].apply(lambda x:np.where(x is None, '--', x))
    return df
コード例 #4
0
ファイル: macro.py プロジェクト: PeinYu/stock
def get_ppi():
    """
        获取工业品出厂价格指数数据
    Return
    --------
    DataFrame
        month :统计月份
        ppiip :工业品出厂价格指数
        ppi :生产资料价格指数
        qm:采掘工业价格指数
        rmi:原材料工业价格指数
        pi:加工工业价格指数
        cg:生活资料价格指数
        food:食品类价格指数
        clothing:衣着类价格指数
        roeu:一般日用品价格指数
        dcg:耐用消费品价格指数
    """
    rdint = vs.random()
    request = Request(vs.MACRO_URL%(vs.P_TYPE['http'], vs.DOMAINS['sina'],
                                    rdint, vs.MACRO_TYPE[1], 3, 600,
                                    rdint))
    text = urlopen(request, timeout=10).read()
    text = text.decode('gbk') if ct.PY3 else text
    regSym = re.compile(r'\,count:(.*?)\}')
    datastr = regSym.findall(text)
    datastr = datastr[0]
    datastr = datastr.split('data:')[1]
    js = json.loads(datastr)
    df = pd.DataFrame(js, columns=vs.PPI_COLS)
    for i in df.columns:
        df[i] = df[i].apply(lambda x:np.where(x is None, np.NaN, x))
        if i != 'month':
            df[i] = df[i].astype(float)
    return df
コード例 #5
0
def get_gdp_contrib():
    """
        获取三大产业贡献率数据
    Return
    --------
    DataFrame
        year :统计年度
        gdp_yoy :国内生产总值
        pi :第一产业献率(%)
        si :第二产业献率(%)
        industry:其中工业献率(%)
        ti :第三产业献率(%)
    """
    rdint = vs.random()
    request = Request(vs.MACRO_URL % (vs.P_TYPE['http'], vs.DOMAINS['sina'],
                                      rdint, vs.MACRO_TYPE[0], 6, 60, rdint))
    text = urlopen(request, timeout=10).read()
    text = text.decode('gbk') if ct.PY3 else text
    regSym = re.compile(r'\,count:(.*?)\}')
    datastr = regSym.findall(text)
    datastr = datastr[0]
    datastr = datastr.split('data:')[1]
    datastr = datastr.replace('"', '').replace('null', '0')
    js = json.loads(datastr)
    df = pd.DataFrame(js, columns=vs.GDP_CONTRIB_COLS)
    df[df == 0] = np.NaN
    return df
コード例 #6
0
def get_gdp_for():
    """
        获取三大需求对GDP贡献数据
    Return
    --------
    DataFrame
        year :统计年度
        end_for :最终消费支出贡献率(%)
        for_rate :最终消费支出拉动(百分点)
        asset_for :资本形成总额贡献率(%)
        asset_rate:资本形成总额拉动(百分点)
        goods_for :货物和服务净出口贡献率(%)
        goods_rate :货物和服务净出口拉动(百分点)
    """
    rdint = vs.random()
    request = Request(vs.MACRO_URL % (vs.P_TYPE['http'], vs.DOMAINS['sina'],
                                      rdint, vs.MACRO_TYPE[0], 4, 80, rdint))
    text = urlopen(request, timeout=10).read()
    text = text.decode('gbk') if ct.PY3 else text
    regSym = re.compile(r'\,count:(.*?)\}')
    datastr = regSym.findall(text)
    datastr = datastr[0]
    datastr = datastr.split('data:')[1]
    datastr = datastr.replace('"', '').replace('null', '0')
    js = json.loads(datastr)
    df = pd.DataFrame(js, columns=vs.GDP_FOR_COLS)
    df[df == 0] = np.NaN
    return df
コード例 #7
0
ファイル: macro.py プロジェクト: PeinYu/stock
def get_gdp_contrib():
    """
        获取三大产业贡献率数据
    Return
    --------
    DataFrame
        year :统计年度
        gdp_yoy :国内生产总值
        pi :第一产业献率(%)
        si :第二产业献率(%)
        industry:其中工业献率(%)
        ti :第三产业献率(%)
    """
    rdint = vs.random()
    request = Request(vs.MACRO_URL%(vs.P_TYPE['http'], vs.DOMAINS['sina'], rdint,
                                    vs.MACRO_TYPE[0], 6, 60, rdint))
    text = urlopen(request, timeout=10).read()
    text = text.decode('gbk') if ct.PY3 else text
    regSym = re.compile(r'\,count:(.*?)\}')
    datastr = regSym.findall(text)
    datastr = datastr[0]
    datastr = datastr.split('data:')[1]
    datastr = datastr.replace('"', '').replace('null', '0')
    js = json.loads(datastr)
    df = pd.DataFrame(js, columns=vs.GDP_CONTRIB_COLS)
    df[df==0] = np.NaN
    return df
コード例 #8
0
def get_money_supply_bal():
    """
        获取货币供应量(年底余额)数据
    Return
    --------
    DataFrame
        year :统计年度
        m2 :货币和准货币(亿元)
        m1:货币(亿元)
        m0:流通中现金(亿元)
        cd:活期存款(亿元)
        qm:准货币(亿元)
        ftd:定期存款(亿元)
        sd:储蓄存款(亿元)
        rests:其他存款(亿元)
    """
    rdint = vs.random()
    request = Request(vs.MACRO_URL % (vs.P_TYPE['http'], vs.DOMAINS['sina'],
                                      rdint, vs.MACRO_TYPE[2], 0, 200, rdint))
    text = urlopen(request, timeout=10).read()
    text = text.decode('gbk')
    regSym = re.compile(r'\,count:(.*?)\}')
    datastr = regSym.findall(text)
    datastr = datastr[0]
    datastr = datastr.split('data:')[1]
    js = json.loads(datastr)
    df = pd.DataFrame(js, columns=vs.MONEY_SUPPLY_BLA_COLS)
    for i in df.columns:
        df[i] = df[i].apply(lambda x: np.where(x is None, '--', x))
    return df
コード例 #9
0
def get_gdp_quarter():
    """
        获取季度国内生产总值数据
    Return
    --------
    DataFrame
        quarter :季度
        gdp :国内生产总值(亿元)
        gdp_yoy :国内生产总值同比增长(%)
        pi :第一产业增加值(亿元)
        pi_yoy:第一产业增加值同比增长(%)
        si :第二产业增加值(亿元)
        si_yoy :第二产业增加值同比增长(%)
        ti :第三产业增加值(亿元)
        ti_yoy :第三产业增加值同比增长(%)
    """
    rdint = vs.random()
    request = Request(vs.MACRO_URL % (vs.P_TYPE['http'], vs.DOMAINS['sina'],
                                      rdint, vs.MACRO_TYPE[0], 1, 250, rdint))
    text = urlopen(request, timeout=10).read()
    text = text.decode('gbk') if ct.PY3 else text
    regSym = re.compile(r'\,count:(.*?)\}')
    datastr = regSym.findall(text)
    datastr = datastr[0]
    datastr = datastr.split('data:')[1]
    datastr = datastr.replace('"', '').replace('null', '0')
    js = json.loads(datastr)
    df = pd.DataFrame(js, columns=vs.GDP_QUARTER_COLS)
    df['quarter'] = df['quarter'].astype(object)
    df[df == 0] = np.NaN
    return df
コード例 #10
0
def get_rrr():
    """
        获取存款准备金率数据
    Return
    --------
    DataFrame
        date :变动日期
        before :调整前存款准备金率(%)
        now:调整后存款准备金率(%)
        changed:调整幅度(%)
    """
    rdint = vs.random()
    request = Request(vs.MACRO_URL % (vs.P_TYPE['http'], vs.DOMAINS['sina'],
                                      rdint, vs.MACRO_TYPE[2], 4, 100, rdint))
    text = urlopen(request, timeout=10).read()
    text = text.decode('gbk')
    regSym = re.compile(r'\,count:(.*?)\}')
    datastr = regSym.findall(text)
    datastr = datastr[0]
    datastr = datastr.split('data:')[1]
    js = json.loads(datastr)
    df = pd.DataFrame(js, columns=vs.RRR_COLS)
    for i in df.columns:
        df[i] = df[i].apply(lambda x: np.where(x is None, '--', x))
    return df
コード例 #11
0
def get_gdp_year():
    """
        获取年度国内生产总值数据
    Return
    --------
    DataFrame
        year :统计年度
        gdp :国内生产总值(亿元)
        pc_gdp :人均国内生产总值(元)
        gnp :国民生产总值(亿元)
        pi :第一产业(亿元)
        si :第二产业(亿元)
        industry :工业(亿元)
        cons_industry :建筑业(亿元)
        ti :第三产业(亿元)
        trans_industry :交通运输仓储邮电通信业(亿元)
        lbdy :批发零售贸易及餐饮业(亿元)
    """
    rdint = vs.random()
    request = Request(vs.MACRO_URL % (vs.P_TYPE['http'], vs.DOMAINS['sina'],
                                      rdint, vs.MACRO_TYPE[0], 0, 70, rdint))
    text = urlopen(request, timeout=10).read()
    text = text.decode('gbk') if ct.PY3 else text
    regSym = re.compile(r'\,count:(.*?)\}')
    datastr = regSym.findall(text)
    datastr = datastr[0]
    datastr = datastr.split('data:')[1]
    datastr = datastr.replace('"', '').replace('null', '0')
    js = json.loads(datastr)
    df = pd.DataFrame(js, columns=vs.GDP_YEAR_COLS)
    df[df == 0] = np.NaN
    return df
コード例 #12
0
ファイル: macro.py プロジェクト: PeinYu/stock
def get_gdp_for():
    """
        获取三大需求对GDP贡献数据
    Return
    --------
    DataFrame
        year :统计年度
        end_for :最终消费支出贡献率(%)
        for_rate :最终消费支出拉动(百分点)
        asset_for :资本形成总额贡献率(%)
        asset_rate:资本形成总额拉动(百分点)
        goods_for :货物和服务净出口贡献率(%)
        goods_rate :货物和服务净出口拉动(百分点)
    """
    rdint = vs.random()
    request = Request(vs.MACRO_URL%(vs.P_TYPE['http'], vs.DOMAINS['sina'],
                                    rdint, vs.MACRO_TYPE[0], 4, 80, rdint))
    text = urlopen(request,timeout=10).read()
    text = text.decode('gbk') if ct.PY3 else text
    regSym = re.compile(r'\,count:(.*?)\}')
    datastr = regSym.findall(text)
    datastr = datastr[0]
    datastr = datastr.split('data:')[1]
    datastr = datastr.replace('"','').replace('null','0')
    js = json.loads(datastr)
    df = pd.DataFrame(js,columns=vs.GDP_FOR_COLS)
    df[df==0] = np.NaN
    return df
コード例 #13
0
def get_ppi():
    """
        获取工业品出厂价格指数数据
    Return
    --------
    DataFrame
        month :统计月份
        ppiip :工业品出厂价格指数
        ppi :生产资料价格指数
        qm:采掘工业价格指数
        rmi:原材料工业价格指数
        pi:加工工业价格指数
        cg:生活资料价格指数
        food:食品类价格指数
        clothing:衣着类价格指数
        roeu:一般日用品价格指数
        dcg:耐用消费品价格指数
    """
    rdint = vs.random()
    request = Request(vs.MACRO_URL % (vs.P_TYPE['http'], vs.DOMAINS['sina'],
                                      rdint, vs.MACRO_TYPE[1], 3, 600, rdint))
    text = urlopen(request, timeout=10).read()
    text = text.decode('gbk') if ct.PY3 else text
    regSym = re.compile(r'\,count:(.*?)\}')
    datastr = regSym.findall(text)
    datastr = datastr[0]
    datastr = datastr.split('data:')[1]
    js = json.loads(datastr)
    df = pd.DataFrame(js, columns=vs.PPI_COLS)
    for i in df.columns:
        df[i] = df[i].apply(lambda x: np.where(x is None, np.NaN, x))
        if i != 'month':
            df[i] = df[i].astype(float)
    return df
コード例 #14
0
ファイル: macro.py プロジェクト: PeinYu/stock
def get_gdp_quarter():
    """
        获取季度国内生产总值数据
    Return
    --------
    DataFrame
        quarter :季度
        gdp :国内生产总值(亿元)
        gdp_yoy :国内生产总值同比增长(%)
        pi :第一产业增加值(亿元)
        pi_yoy:第一产业增加值同比增长(%)
        si :第二产业增加值(亿元)
        si_yoy :第二产业增加值同比增长(%)
        ti :第三产业增加值(亿元)
        ti_yoy :第三产业增加值同比增长(%)
    """
    rdint = vs.random()
    request = Request(vs.MACRO_URL%(vs.P_TYPE['http'], vs.DOMAINS['sina'],
                                    rdint, vs.MACRO_TYPE[0], 1, 250,
                                    rdint))
    text = urlopen(request,timeout=10).read()
    text = text.decode('gbk') if ct.PY3 else text
    regSym = re.compile(r'\,count:(.*?)\}')
    datastr = regSym.findall(text)
    datastr = datastr[0]
    datastr = datastr.split('data:')[1]
    datastr = datastr.replace('"', '').replace('null', '0')
    js = json.loads(datastr)
    df = pd.DataFrame(js, columns=vs.GDP_QUARTER_COLS)
    df['quarter'] = df['quarter'].astype(object)
    df[df==0] = np.NaN
    return df
コード例 #15
0
ファイル: macro.py プロジェクト: PeinYu/stock
def get_money_supply_bal():
    """
        获取货币供应量(年底余额)数据
    Return
    --------
    DataFrame
        year :统计年度
        m2 :货币和准货币(亿元)
        m1:货币(亿元)
        m0:流通中现金(亿元)
        cd:活期存款(亿元)
        qm:准货币(亿元)
        ftd:定期存款(亿元)
        sd:储蓄存款(亿元)
        rests:其他存款(亿元)
    """
    rdint = vs.random()
    request = Request(vs.MACRO_URL%(vs.P_TYPE['http'], vs.DOMAINS['sina'],
                                    rdint, vs.MACRO_TYPE[2], 0, 200,
                                    rdint))
    text = urlopen(request,timeout=10).read()
    text = text.decode('gbk')
    regSym = re.compile(r'\,count:(.*?)\}')
    datastr = regSym.findall(text)
    datastr = datastr[0]
    datastr = datastr.split('data:')[1]
    js = json.loads(datastr)
    df = pd.DataFrame(js, columns=vs.MONEY_SUPPLY_BLA_COLS)
    for i in df.columns:
        df[i] = df[i].apply(lambda x:np.where(x is None, '--', x))
    return df
コード例 #16
0
def get_cpi():
    """
        获取居民消费价格指数数据
    Return
    --------
    DataFrame
        month :统计月份
        cpi :价格指数
    """
    rdint = vs.random()
    request = Request(vs.MACRO_URL % (vs.P_TYPE['http'], vs.DOMAINS['sina'],
                                      rdint, vs.MACRO_TYPE[1], 0, 600, rdint))
    text = urlopen(request, timeout=10).read()
    text = text.decode('gbk') if ct.PY3 else text
    regSym = re.compile(r'\,count:(.*?)\}')
    datastr = regSym.findall(text)
    datastr = datastr[0]
    datastr = datastr.split('data:')[1]
    js = json.loads(datastr)
    df = pd.DataFrame(js, columns=vs.CPI_COLS)
    df['cpi'] = df['cpi'].astype(float)
    return df
コード例 #17
0
ファイル: macro.py プロジェクト: PeinYu/stock
def get_money_supply():
    """
        获取货币供应量数据
    Return
    --------
    DataFrame
        month :统计时间
        m2 :货币和准货币(广义货币M2)(亿元)
        m2_yoy:货币和准货币(广义货币M2)同比增长(%)
        m1:货币(狭义货币M1)(亿元)
        m1_yoy:货币(狭义货币M1)同比增长(%)
        m0:流通中现金(M0)(亿元)
        m0_yoy:流通中现金(M0)同比增长(%)
        cd:活期存款(亿元)
        cd_yoy:活期存款同比增长(%)
        qm:准货币(亿元)
        qm_yoy:准货币同比增长(%)
        ftd:定期存款(亿元)
        ftd_yoy:定期存款同比增长(%)
        sd:储蓄存款(亿元)
        sd_yoy:储蓄存款同比增长(%)
        rests:其他存款(亿元)
        rests_yoy:其他存款同比增长(%)
    """
    rdint = vs.random()
    request = Request(vs.MACRO_URL%(vs.P_TYPE['http'], vs.DOMAINS['sina'],
                                    rdint, vs.MACRO_TYPE[2], 1, 600,
                                    rdint))
    text = urlopen(request, timeout=10).read()
    text = text.decode('gbk')
    regSym = re.compile(r'\,count:(.*?)\}')
    datastr = regSym.findall(text)
    datastr = datastr[0]
    datastr = datastr.split('data:')[1]
    js = json.loads(datastr)
    df = pd.DataFrame(js, columns=vs.MONEY_SUPPLY_COLS)
    for i in df.columns:
        df[i] = df[i].apply(lambda x:np.where(x is None, '--', x))
    return df
コード例 #18
0
def get_money_supply():
    """
        获取货币供应量数据
    Return
    --------
    DataFrame
        month :统计时间
        m2 :货币和准货币(广义货币M2)(亿元)
        m2_yoy:货币和准货币(广义货币M2)同比增长(%)
        m1:货币(狭义货币M1)(亿元)
        m1_yoy:货币(狭义货币M1)同比增长(%)
        m0:流通中现金(M0)(亿元)
        m0_yoy:流通中现金(M0)同比增长(%)
        cd:活期存款(亿元)
        cd_yoy:活期存款同比增长(%)
        qm:准货币(亿元)
        qm_yoy:准货币同比增长(%)
        ftd:定期存款(亿元)
        ftd_yoy:定期存款同比增长(%)
        sd:储蓄存款(亿元)
        sd_yoy:储蓄存款同比增长(%)
        rests:其他存款(亿元)
        rests_yoy:其他存款同比增长(%)
    """
    rdint = vs.random()
    request = Request(vs.MACRO_URL % (vs.P_TYPE['http'], vs.DOMAINS['sina'],
                                      rdint, vs.MACRO_TYPE[2], 1, 600, rdint))
    text = urlopen(request, timeout=10).read()
    text = text.decode('gbk')
    regSym = re.compile(r'\,count:(.*?)\}')
    datastr = regSym.findall(text)
    datastr = datastr[0]
    datastr = datastr.split('data:')[1]
    js = json.loads(datastr)
    df = pd.DataFrame(js, columns=vs.MONEY_SUPPLY_COLS)
    for i in df.columns:
        df[i] = df[i].apply(lambda x: np.where(x is None, '--', x))
    return df
コード例 #19
0
ファイル: macro.py プロジェクト: PeinYu/stock
def get_cpi():
    """
        获取居民消费价格指数数据
    Return
    --------
    DataFrame
        month :统计月份
        cpi :价格指数
    """
    rdint = vs.random()
    request = Request(vs.MACRO_URL%(vs.P_TYPE['http'], vs.DOMAINS['sina'],
                                    rdint, vs.MACRO_TYPE[1], 0, 600,
                                    rdint))
    text = urlopen(request,timeout=10).read()
    text = text.decode('gbk') if ct.PY3 else text
    regSym = re.compile(r'\,count:(.*?)\}')
    datastr = regSym.findall(text)
    datastr = datastr[0]
    datastr = datastr.split('data:')[1]
    js = json.loads(datastr)
    df = pd.DataFrame(js, columns=vs.CPI_COLS)
    df['cpi'] = df['cpi'].astype(float)
    return df
コード例 #20
0
def get_loan_rate():
    """
        获取贷款利率数据
    Return
    --------
    DataFrame
        date :执行日期
        loan_type :存款种类
        rate:利率(%)
    """
    rdint = vs.random()
    request = Request(vs.MACRO_URL % (vs.P_TYPE['http'], vs.DOMAINS['sina'],
                                      rdint, vs.MACRO_TYPE[2], 3, 800, rdint))
    text = urlopen(request, timeout=10).read()
    text = text.decode('gbk')
    regSym = re.compile(r'\,count:(.*?)\}')
    datastr = regSym.findall(text)
    datastr = datastr[0]
    datastr = datastr.split('data:')[1]
    js = json.loads(datastr)
    df = pd.DataFrame(js, columns=vs.LOAN_COLS)
    for i in df.columns:
        df[i] = df[i].apply(lambda x: np.where(x is None, '--', x))
    return df