コード例 #1
0
ファイル: dodo.py プロジェクト: u01ai11/conpy
def task_csd():
    """Step 05: Compute cross-spectral density (CSD) matrices"""
    for subject in subjects:
        epo_fname = fname.epo(subject=subject)
        csd_fnames = [fname.csd(subject=subject, condition=cond)
                      for cond in conditions + ['baseline']]

        yield dict(
            name=subject,
            task_dep=['epochs'],
            file_dep=[epo_fname, '05_csd.py'],
            targets=csd_fnames,
            actions=['python 05_csd.py %s' % subject],
        )
コード例 #2
0
ファイル: dodo.py プロジェクト: u01ai11/conpy
def task_figures():
    """Make all figures. Each figure is a sub-task."""
    # Make figure 1: plot of the CSD matrices.
    yield dict(
        name='csd',
        task_dep=['connectivity_stats'],
        file_dep=[fname.epo(subject=subjects[0]),
                  fname.csd(subject=subjects[0], condition='face')],
        targets=['../paper/figures/csd.pdf'],
        actions=['python figure_csd.py'],
    )

    # Make figure 2: plot of the source space and forward model.
    yield dict(
        name='forward',
        file_dep=[fname.fwd(subject=subjects[0]),
                  fname.fwd_r(subject=subjects[0]),
                  fname.trans(subject=subjects[0])],
        targets=['../paper/figures/forward1.png',
                 '../paper/figures/forward2.png'],
        actions=['python figure_forward.py'],
    )

    # Make figure 3: grand average power maps.
    file_dep = [fname.ga_power_hemi(condition=cond, hemi='lh') for cond in conditions]
    file_dep += [fname.ga_power_hemi(condition=cond, hemi='rh') for cond in conditions]
    targets = ['../paper/figures/power_face_lh.png',
               '../paper/figures/power_face_rh.png',
               '../paper/figures/power_scrambled_lh.png',
               '../paper/figures/power_scrambled_rh.png']
    targets += ['../paper/figures/power_contrast_%s-%s-lh.png' % (freq[0], freq[1]) for freq in freq_bands]

    yield dict(
        name='power',
        file_dep=file_dep,
        targets=targets,
        actions=['python figure_power.py'],
    )

    # Make figure 4: plot of the functional connectivity.
    yield dict(
        name='connectivity',
        file_dep=[fname.ga_con(condition='pruned'),
                  fname.ga_con(condition='parcelled')],
        targets=['../paper/figures/degree_lh.png',
                 '../paper/figures/degree_rh.png',
                 '../paper/figures/squircle.pdf'],
        actions=['python figure_connectivity.py'],
    )
コード例 #3
0
ファイル: dodo.py プロジェクト: u01ai11/conpy
def task_connectivity():
    """Step 10: Compute DICS connectivity."""
    for subject in subjects:
        fwd_r_fname = fname.fwd_r(subject=subject)

        csd_fnames = []
        con_fnames = []
        for cond in conditions:
            csd_fnames.append(fname.csd(subject=subject, condition=cond))
            con_fnames.append(fname.con(subject=subject, condition=cond))

        yield dict(
            name=subject,
            task_dep=['power'],
            file_dep=[fwd_r_fname, fname.pairs, '10_connectivity.py'] + csd_fnames,
            targets=con_fnames,
            actions=['python 10_connectivity.py %s' % subject],
        )
コード例 #4
0
ファイル: dodo.py プロジェクト: u01ai11/conpy
def task_power():
    """Step 09: Compute DICS power maps."""
    for subject in subjects:
        fwd_r_fname = fname.fwd_r(subject=subject)

        csd_fnames = []
        stc_fnames = []
        for cond in conditions + ['baseline']:
            csd_fnames.append(fname.csd(subject=subject, condition=cond))
            stc_fnames.append(fname.power_hemi(subject=subject, condition=cond, hemi='lh'))
            stc_fnames.append(fname.power_hemi(subject=subject, condition=cond, hemi='rh'))

        yield dict(
            name=subject,
            task_dep=['select_vertices'],
            file_dep=[fwd_r_fname, '09_power.py'] + csd_fnames,
            targets=stc_fnames,
            actions=['python 09_power.py %s' % subject],
        )
コード例 #5
0
for condition in conditions:
    print('Condition:', condition)
    # Remove the mean during the time interval for which we compute the CSD
    epochs_baselined = epochs[condition].apply_baseline((csd_tmin, csd_tmax))

    # Compute CSD for the desired time interval
    csd = csd_morlet(epochs_baselined,
                     frequencies=frequencies,
                     tmin=csd_tmin,
                     tmax=csd_tmax,
                     decim=20,
                     n_jobs=n_jobs,
                     verbose=True)

    # Save the CSD matrices
    csd.save(fname.csd(condition=condition, subject=subject))
    report.add_figs_to_section(csd.plot(show=False),
                               ['CSD for %s' % condition],
                               section='Sensor-level')

# Also compute the CSD for the baseline period (use all epochs for this,
# regardless of condition). This way, we can compare the change in power caused
# by the presentation of the stimulus.
epochs = epochs.apply_baseline((-0.2, 0))  # Make sure data is zero-mean
csd_baseline = csd_morlet(epochs,
                          frequencies=frequencies,
                          tmin=-0.2,
                          tmax=0,
                          decim=20,
                          n_jobs=n_jobs,
                          verbose=True)
コード例 #6
0
ファイル: figure_csd.py プロジェクト: sherdim/conpy
from matplotlib import pyplot as plt
import mne
from mne.time_frequency import read_csd, pick_channels_csd

from config import fname, subjects, freq_bands

info = mne.io.read_info(fname.epo(subject=subjects[0]))
grads = [info['ch_names'][ch] for ch in mne.pick_types(info, meg='grad')]
csd = read_csd(fname.csd(subject=subjects[0], condition='face'))
csd = pick_channels_csd(csd, grads)
csd = csd.mean([f[0] for f in freq_bands], [f[1] for f in freq_bands])

# Plot theta, alpha, low beta
csd[:3].plot(info, n_cols=3, show=False)
plt.savefig('../paper/figures/csd1.pdf', bbox_inches='tight')

# Plot high beta 1, high beta 2 and low gamma
csd[3:].plot(info, n_cols=3, show=False)
plt.savefig('../paper/figures/csd2.pdf', bbox_inches='tight')
コード例 #7
0
ファイル: 09_power.py プロジェクト: sherdim/conpy
# Read the forward model
fwd = mne.read_forward_solution(fname.fwd(subject=subject))

# Read the info structure
info = mne.io.read_info(fname.epo(subject=subject))

# Compute source power for all frequency bands and all conditions
fmin = [f[0] for f in freq_bands]
fmax = [f[1] for f in freq_bands]

csds = dict()
for condition in conditions + ['baseline']:
    print('Reading CSD matrix for condition:', condition)
    # Read the CSD matrix
    csds[condition] = read_csd(fname.csd(condition=condition, subject=subject))

# Average the CSDs of both conditions
csd = csds['face'].copy()
csd._data += csds['scrambled']._data
csd._data /= 2

# Compute the DICS beamformer using the CSDs from both conditions, for all
# frequency bands.
filters = make_dics(info=info, forward=fwd, csd=csd.mean(fmin, fmax), reg=reg,
                    pick_ori='max-power')

stcs = dict()
for condition in conditions + ['baseline']:
    print('Computing power for condition:', condition)
    stcs[condition], _ = apply_dics_csd(csds[condition].mean(fmin, fmax),