コード例 #1
0
    def __init__(self, pre_path=''):
        self.all_data = ABSAData()
        self.train_iter = self.all_data.train_iter
        self.val_iter = self.all_data.val_iter
        self.test_iter = self.all_data.test_iter

        self.text_vocab = self.all_data.text_vocab
        self.aspect_vocab = self.all_data.aspect_vocab
        self.label_vocab = self.all_data.label_vocab

        self.device_dict = {
            -1: 'cpu',
            0: 'cuda:0',
            1: 'cuda:1',
            2: 'cuda:2',
        }
        self.model = config.model().to(self.device_dict[config.device])
        if config.pretrain:
            self.load_model(config.pretrain_path)

        self.criterion = config.criterion()
        # TODO: Set momentum for optimizer, momentum=0.9
        self.optimizer = config.optimizer(filter(lambda p: p.requires_grad,
                                                 self.model.parameters()),
                                          lr=config.learning_rate,
                                          lr_decay=config.lr_decay,
                                          weight_decay=0.001)
        if config.if_log:
            self.writer = SummaryWriter(log_dir=config.log_dir)

        # Create pretrained model folder
        if not config.pretrain:
            if pre_path != '':
                self.pre_dir = pre_path
コード例 #2
0
    def __init__(self, model, train_dataset, checkpoint_path, best_model_path,
                 log_path):
        os.environ['CUDA_VISIBLE_DEVICES'] = device_idx
        self.bare_model = model.to(device)
        self.model = nn.DataParallel(model) if num_gpu > 1 else model
        self.train_dataloader = data.DataLoader(train_dataset,
                                                batch_size=batch_size,
                                                shuffle=True,
                                                num_workers=num_workers)
        self.optim = optimizer(self.model.parameters(), lr=learning_rate)

        self.checkpoint_path = checkpoint_path
        self.best_model_path = best_model_path
        self.log_path = log_path

        self.best_avg_loss = 987654321
コード例 #3
0
ファイル: test.py プロジェクト: rabbi-shergill/lol
def train(epoch, global_step):
    optimizer = config.optimizer(steps=global_step, epoch=epoch)
    # return {'accuracy': 10.0, 'loss': 10.0}
    for batch in range(len(labels) // config.batch_size()):
        L = batch * config.batch_size()
        progress(epoch, (L * 10.0) / len(labels))
        R = L + config.batch_size()
        mini_batch_images = images[L:R]
        mini_batch_labels = labels[L:R]
        with tfe.GradientTape() as tape:
            s = tf.concat([
                tf.gather_nd(mini_batch_images, gather_map),
                tf.zeros(list(np.shape(gather_map)[:2]) + [2])
            ], -1)
            logits = model.flow(s)
            input_labels_one_hot = tf.one_hot(mini_batch_labels, 10)
            loss = tf.reduce_sum(
                tf.nn.softmax_cross_entropy_with_logits_v2(
                    labels=input_labels_one_hot, logits=logits))

        grads = tape.gradient(loss, model.trainable_variables)
        optimizer.apply_gradients(
            zip(grads, model.trainable_variables),
            global_step=tf.train.get_or_create_global_step())
        global_step += 1

    loss = 0.0
    success = 0.0
    for batch in range(len(labels) // config.batch_size()):
        L = batch * config.batch_size()
        R = L + config.batch_size()
        mini_batch_images = images[L:R]
        mini_batch_labels = labels[L:R]
        s = tf.concat([
            tf.gather_nd(mini_batch_images, gather_map),
            tf.zeros(list(np.shape(gather_map)[:2]) + [2])
        ], -1)
        logits = model.flow(s)
        classes = tf.argmax(logits, 1)
        loss += tf.reduce_sum(
            tf.nn.softmax_cross_entropy_with_logits_v2(
                labels=input_labels_one_hot, logits=logits))
        success += tf.reduce_sum(
            tf.cast(tf.equal(classes, mini_batch_labels), tf.float32))

    return {'accuracy': success * 100.0 / len(labels), 'loss': loss}
コード例 #4
0
ファイル: train.py プロジェクト: williamSYSU/Corner
    def align_classification_train_crf(self,
                                       train_data,
                                       valid_data,
                                       test_data,
                                       embed,
                                       pretrain=True):
        init_aspect = np.array(np.load("initAspect.npy"))
        # init_aspect = init_aspect / np.linalg.norm(init_aspect, axis=-1, keepdims=True)
        init_aspect = torch.from_numpy(init_aspect)
        PreTrainABAE = clas_model.PreTrainABAE(init_aspect,
                                               embed).to(config.device)

        pre_trained_aspect = torch.load("AspectExtract/Aspect_Model.pkl")
        aspect_dict = PreTrainABAE.state_dict()
        pre_trained_dict = {
            k: v
            for k, v in pre_trained_aspect.items() if k in aspect_dict
        }
        aspect_dict.update(pre_trained_dict)
        PreTrainABAE.load_state_dict(aspect_dict)
        # PreTrainABAE = PreTrainABAE.eval()

        trained_aspect = pre_trained_aspect["aspect_lookup_mat"].data

        run = clas_model.CrfWdeRnnEncoder(300, 300, 50, embed,
                                          trained_aspect).to(config.device)
        # params = []
        # for param in run.parameters():
        #     if param.requires_grad:
        #         params.append(param)
        # 加载预训练权重
        if pretrain is True:
            pre_trained_dict = torch.load(config.pretrained_model)
            # pre_trained_dict = torch.load(config.pretrained_model, map_location=lambda storage, loc: storage)
            model_dict = run.state_dict()
            pre_trained_dict = {
                k: v
                for k, v in pre_trained_dict.items() if k in model_dict
            }
            model_dict.update(pre_trained_dict)
            run.load_state_dict(model_dict)

        criterion = config.criterion()
        optimizer_rnn = config.optimizer(filter(lambda p: p.requires_grad,
                                                run.parameters()),
                                         lr=config.clas_lr)
        optimizer_abae = config.optimizer(filter(lambda p: p.requires_grad,
                                                 PreTrainABAE.parameters()),
                                          lr=config.clas_lr)
        all_evaluate = []
        best_test = 0
        for epoch in range(config.epoch + 1):
            run_hidden = run.initHidden(config.batch_size)
            # context = torch.ones((config.batch_size, 50))
            # loss_last = torch.tensor([0], dtype=torch.float)
            optimizer_rnn.zero_grad()
            optimizer_abae.zero_grad()
            run.zero_grad()
            for idx, sample_batch in enumerate(train_data):
                run = run.train()
                PreTrainABAE = PreTrainABAE.train()
                input_data = sample_batch['input'].to(config.device)
                label = sample_batch['label'].to(config.device)
                aspect_info, trained_aspect, reg = PreTrainABAE(input_data)
                input_data[:, 1] = aspect_info
                out = run(input_data, run_hidden, trained_aspect,
                          "train").view(config.batch_size, 2).to(config.device)
                # print("result :", out.size())
                # print(label)
                # loss = criterion(out, label) + reg.float()
                loss = criterion(out, label)
                loss.backward()
                optimizer_rnn.step()
                optimizer_abae.step()
            # if epoch % 5 == 0:
            #     run.zero_grad()
            #     run = run.eval()
            #     valid_now = self.valid(run)
            #     print('epoch {} of {}: TEST : {}'.format(epoch, 100, valid_now))
            print('epoch {} of {}: loss : {}'.format(epoch, config.epoch,
                                                     loss))

            if epoch % 1 == 0:
                with torch.no_grad():
                    total = 0
                    correct = 0
                    optimizer_rnn.zero_grad()
                    optimizer_abae.zero_grad()
                    run.zero_grad()
                    PreTrainABAE.zero_grad()
                    run_hidden = run.initHidden(1)
                    # context = torch.ones((1, 50))
                    for index, sample_batch in enumerate(valid_data):
                        run = run.eval()
                        PreTrainABAE = PreTrainABAE.eval()
                        input_data = sample_batch['input'].to(config.device)
                        label = sample_batch['label'].to(config.device)
                        aspect_info, trained_aspect, _ = PreTrainABAE(
                            input_data)
                        input_data[:, 1] = aspect_info
                        outputs = run(input_data, run_hidden, trained_aspect,
                                      "test").view(1, 2).to(config.device)
                        _, predicted = torch.max(outputs.data, 1)
                        # print(outputs)
                        # print(predicted)
                        # print(label)
                        total += label.size(0)
                        # print(total)
                        correct += (predicted == label).sum().item()
                        # print(correct)
                    acc = correct / total
                    print("acc rate :", acc)

                    if acc > best_test:
                        best_test = acc
                        file_name = "ClassifyModelSave/Final_model.pkl"
                        file_name_aspect = "ClassifyModelSave/Final_model_aspect.pkl"
                        torch.save(run.state_dict(), file_name)
                        torch.save(PreTrainABAE.state_dict(), file_name_aspect)

                    all_evaluate.append(acc)
        '''
        Load the best models and Begin test
        '''
        PreTrainABAE_test = clas_model.PreTrainABAE(init_aspect,
                                                    embed).to(config.device)

        pre_trained_aspect = torch.load(
            "ClassifyModelSave/Final_model_aspect.pkl")
        aspect_dict = PreTrainABAE_test.state_dict()
        pre_trained_dict = {
            k: v
            for k, v in pre_trained_aspect.items() if k in aspect_dict
        }
        aspect_dict.update(pre_trained_dict)
        PreTrainABAE_test.load_state_dict(aspect_dict)

        trained_aspect = pre_trained_aspect["aspect_lookup_mat"].data

        model_test = clas_model.CrfWdeRnnEncoder(
            300, 300, 50, embed, trained_aspect).to(config.device)

        pre_trained_dict = torch.load("ClassifyModelSave/Final_model.pkl")
        model_dict = model_test.state_dict()
        pre_trained_dict = {
            k: v
            for k, v in pre_trained_dict.items() if k in model_dict
        }
        model_dict.update(pre_trained_dict)
        model_test.load_state_dict(model_dict)

        with torch.no_grad():
            total = 0
            correct = 0
            model_test.zero_grad()
            PreTrainABAE_test.zero_grad()
            run_hidden = model_test.initHidden(1)
            # context = torch.ones((1, 50))
            for index, sample_batch in enumerate(test_data):
                model_test = model_test.eval()
                input_data = sample_batch['input'].to(config.device)
                label = sample_batch['label'].to(config.device)
                aspect_info, trained_aspect, _ = PreTrainABAE_test(input_data)
                input_data[:, 1] = aspect_info
                outputs = model_test(input_data, run_hidden, trained_aspect,
                                     "test").view(1, 2).to(config.device)
                _, predicted = torch.max(outputs.data, 1)
                # print(outputs)
                # print(predicted)
                # print(label)
                total += label.size(0)
                # print(total)
                correct += (predicted == label).sum().item()
                # print(correct)
            acc = correct / total
            print("Test acc rate (final result) :", acc)

        return all_evaluate
コード例 #5
0
ファイル: train.py プロジェクト: williamSYSU/Corner
    def classification_train_fix(self,
                                 train_data,
                                 test_data,
                                 embed,
                                 pretrain=True):
        run = clas_model.AttentionEncoder(300, 300, 50,
                                          embed).to(config.device)
        params = []
        for param in run.parameters():
            if param.requires_grad:
                params.append(param)
        # 加载预训练权重
        if pretrain is True:
            pre_trained_dict = torch.load(
                config.pretrained_model,
                map_location=lambda storage, loc: storage)
            model_dict = run.state_dict()
            pre_trained_dict = {
                k: v
                for k, v in pre_trained_dict.items() if k in model_dict
            }
            model_dict.update(pre_trained_dict)
            run.load_state_dict(model_dict)

        optimizer = config.optimizer(params, lr=config.clas_lr)
        criterion = config.criterion
        all_evaluate = []

        for epoch in range(config.epoch):
            context = torch.ones((config.batch_size, 50))
            # loss_last = torch.tensor([0], dtype=torch.float)
            optimizer.zero_grad()
            # run.zero_grad()
            for idx, sample_batch in enumerate(train_data):
                run = run.train()
                input_data = sample_batch['input'].to(config.device)
                label = sample_batch['label'].to(config.device)
                out = run(input_data,
                          context.cuda()).view(config.batch_size,
                                               2).to(config.device)
                # print("result :", out.size())
                # print(label)
                loss = criterion(out, label)
                loss.backward()
                optimizer.step()
            # if epoch % 5 == 0:
            #     run.zero_grad()
            #     run = run.eval()
            #     valid_now = self.valid(run)
            #     print('epoch {} of {}: TEST : {}'.format(epoch, 100, valid_now))
            print('epoch {} of {}: loss : {}'.format(epoch, config.epoch,
                                                     loss))

            if epoch % 5 == 0:
                with torch.no_grad():
                    total = 0
                    correct = 0
                    optimizer.zero_grad()
                    run.zero_grad()
                    context = torch.ones((1, 50))
                    for index, sample_batch in enumerate(test_data):
                        run = run.eval()
                        input_data = sample_batch['input'].to(config.device)
                        label = sample_batch['label'].to(config.device)
                        outputs = run(input_data,
                                      context.cuda()).view(1,
                                                           2).to(config.device)
                        _, predicted = torch.max(outputs.data, 1)
                        # print(outputs)
                        # print(predicted)
                        # print(label)
                        total += label.size(0)
                        # print(total)
                        correct += (predicted == label).sum().item()
                        # print(correct)
                    print("acc rate :", correct / total)
                    all_evaluate.append(correct / total)
        return all_evaluate
コード例 #6
0
ファイル: train.py プロジェクト: williamSYSU/Corner
    def weakly_train(self, train_data, test_pos, test_neg, embed, asp_list):
        # run = models.AttentionEncoder(300, 300, 50, embed).to(config.device)

        # init_aspect = np.array(np.load("initAspect.npy"))
        # # init_aspect = init_aspect / np.linalg.norm(init_aspect, axis=-1, keepdims=True)
        # init_aspect = torch.from_numpy(init_aspect)
        # pre_train_abae = weak_model.PreTrainABAE(init_aspect, embed).to(config.device)
        #
        # pre_trained_aspect = torch.load("AspectExtract/Aspect_Model.pkl")
        # aspect_dict = pre_train_abae.state_dict()
        # pre_trained_dict = {k: v for k, v in pre_trained_aspect.items() if k in aspect_dict}
        # aspect_dict.update(pre_trained_dict)
        # pre_train_abae.load_state_dict(aspect_dict)
        # pre_train_abae = pre_train_abae.eval()
        #
        # trained_aspect = pre_trained_aspect["aspect_lookup_mat"].data

        # run = weak_model.WdeRnnEncoderFix(300, 300, 50, embed, trained_aspect).to(config.device)
        run = weak_model.WdeRnnEncoderFix(300, 300, 50,
                                          embed).to(config.device)
        # context = torch.ones((config.batch_size, 50))
        # optimizer = optim.Adagrad(params, lr=0.003)
        # params = []
        # for param in run.parameters():
        #     if param.requires_grad:
        #         params.append(param)

        # optimizer = optim.SGD(filter(lambda p: p.requires_grad, run.parameters()), lr=0.0001)
        optimizer = config.optimizer(filter(lambda p: p.requires_grad,
                                            run.parameters()),
                                     lr=config.weak_lr)
        loss_func = config.criterion(margin=config.margin, p=config.margin_p)

        for epoch in range(config.epoch):
            run_hidden = run.initHidden(config.batch_size)
            loss_last = torch.tensor([0], dtype=torch.float)
            optimizer.zero_grad()
            # run.zero_grad()
            for idx, sample_batch in enumerate(train_data):
                # now = time.time()
                run = run.train()
                input1 = sample_batch['input1'].to(config.device)
                input2 = sample_batch['input2'].to(config.device)
                input3 = sample_batch['input3'].to(config.device)
                aspect1 = sample_batch['aspect1'].to(config.device)
                aspect2 = sample_batch['aspect2'].to(config.device)
                aspect3 = sample_batch['aspect3'].to(config.device)

                # get aspect info
                # aspect_info = pre_train_abae(input1)
                # input1[:, 1] = aspect_info
                # aspect_info = pre_train_abae(input2)
                # input2[:, 1] = aspect_info
                # aspect_info = pre_train_abae(input3)
                # input3[:, 1] = aspect_info

                # feed input data
                out1 = run(input1, run_hidden,
                           aspect1).view(config.batch_size, 300)
                out2 = run(input2, run_hidden,
                           aspect2).view(config.batch_size, 300)
                out3 = run(input3, run_hidden,
                           aspect3).view(config.batch_size, 300)

                # count loss
                loss_last = loss_func(out1, out2, out3)
                loss_last.backward()
                optimizer.step()
            if epoch % config.valid_step == 0:
                run.zero_grad()
                run = run.eval()
                valid_now = self.valid(asp_list, run, test_pos, test_neg,
                                       embed)
                a = round((loss_last).item(), 5)
                b = round(valid_now, 5)
                if config.save_model and valid_now > config.valid_thres:
                    file_name = config.save_model_path + "model_loss_" + str(
                        a) + "valid_" + str(b) + ".pkl"
                    torch.save(run.state_dict(), file_name)

                print('epoch {} of {}: TEST : {}'.format(
                    epoch, config.epoch, valid_now))
            print('epoch {} of {}: loss : {}'.format(epoch, config.epoch,
                                                     loss_last.item()))
コード例 #7
0
        param.requires_grad = False

    for param in model.classifier.parameters():
        param.requires_grad = True

    model = model.to(device)

    ###### TRAIN NEURAL NET ######
    dataloaders = {
        'train': train_loader,
        'val': val_loader,
        'test': test_loader
    }

    criterion = cfg.criterion
    optimizer = cfg.optimizer(model.parameters(), weight_decay=0.1)

    ###### SAVE / LOAD MODEL #####
    filename = "prediction_network_epochs" + str(num_epochs) + "_bs" + str(
        batch_size) + "_num_classes" + str(num_classes)
    load_model = os.path.exists(filename)
    #load_model = False
    if load_model:
        model.load_state_dict(torch.load(filename))
    else:
        model, val_acc_history = train_model(model,
                                             dataloaders,
                                             criterion,
                                             optimizer,
                                             num_epochs=num_epochs,
                                             filename=filename)