print(out_fname) print(np.min(out_file[..., 0]), np.max(out_file[..., 0])) Image.fromarray(out_file.astype(np.uint8)).save(out_fname) if __name__ == '__main__': args = get_arguments() params = Params() params = load_json_to_params(params, args.json_path) params.num_steps_predict = params.num_steps_eval params.save_predictions = args.save_predictions params.save_dir = args.save_dir params.is_training = False params.batch_norm_istraining = False params.height_input = 512 params.width_input = 1024 params.height_orig = 604 params.width_orig = 960 params.Nb = 1 filenames_list = list() for file in os.listdir(args.image_dir): if file.endswith(".png") or file.endswith(".jpg"): filenames_list.append(os.path.join(args.image_dir, file)) predict(params, filenames_list)
# Create the Timeline object, and write it to a json file fetched_timeline = timeline.Timeline(run_metadata.step_stats) chrome_trace = fetched_timeline.generate_chrome_trace_format() with open(os.path.join(params.log_dir, 'timeline_01.json'), 'w') as f: f.write(chrome_trace) with open(os.path.join(params.log_dir, 'mem_info.json'), 'w') as f: f.write(str(run_metadata)) else: loss_value, _ = sess.run([loss, train_op], feed_dict=feed_dict) if step % params.ckpt_save_steps == 0: model.save(saver, sess, params.log_dir, step) duration = time.time() - start_time print('step {:d} \t loss = {:.3f}, ({:.3f} sec/step)'.format(step, loss_value, duration)) coord.request_stop() coord.join(threads) if __name__ == '__main__': args = get_arguments() params = Params() params = load_json_to_params(params, args.json_path) params.dataset_directory = '/home/ddegeus/datasets/Cityscapes/training/' params.filelist_filepath = '/home/ddegeus/datasets/Cityscapes/training/panoptic/filenames.lst' params.is_training = True params.batch_norm_istraining = True print(params) train(params)