# Define cuts configMgr.cutsDict["UserRegion"] = "1." # Define weights configMgr.weights = "1." # Define samples bkgSample = Sample("Bkg", kGreen - 9) bkgSample.setStatConfig(False) bkgSample.buildHisto([nbkg], "UserRegion", "cuts") # bkgSample.buildStatErrors([nbkgErr],"UserRegion","cuts") # bkgSample.addSystematic(corb) bkgSample.addSystematic(ucb) sigSample = Sample("Sig", kPink) sigSample.setNormFactor("mu_Sig", 1.0, 0.0, 100.0) sigSample.setStatConfig(False) sigSample.setNormByTheory(False) sigSample.buildHisto([nsig], "UserRegion", "cuts") # sigSample.buildStatErrors([nsigErr],"UserRegion","cuts") # sigSample.addSystematic(cors) # sigSample.addSystematic(ucs) dataSample = Sample("Data", kBlack) dataSample.setData() dataSample.buildHisto([ndata], "UserRegion", "cuts") # Define top-level ana = configMgr.addTopLevelXML("SPlusB") ana.addSamples([bkgSample, sigSample, dataSample]) ana.setSignalSample(sigSample)
other_sample.setNormByTheory() sample_list_bkg.append(other_sample) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # single top single_top_sample = Sample("SingleTop", kGreen-1) single_top_sample.setStatConfig(use_stat) single_top_sample.setNormByTheory() sample_list_bkg.append(single_top_sample) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Z/gamma* z_sample = Sample("ZGamma", kRed+1 ) z_sample.setNormFactor("mu_z", 1, 0, 100) z_sample.setStatConfig(use_stat) sample_list_bkg.append(z_sample) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # ttbar ttbar_sample = Sample("ttbar", kGreen+2) ttbar_sample.setNormFactor("mu_ttbar", 1, 0, 100) ttbar_sample.setStatConfig(use_stat) sample_list_bkg.append(ttbar_sample) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # data data_sample = Sample("data",kBlack) data_sample.setData()
# Define weights configMgr.weights = "1." # Define samples bkgSample = Sample("Bkg",kGreen-9) bkgSample.setNormByTheory(True) bkgSample.buildHisto(nBkgCR,"CR","cuts",0.5) bkgSample.buildHisto(nBkgSR,"SR","cuts",0.5) bkgSample.addSystematic(bg1xsec) ddSample = Sample("DataDriven",kGreen+2) ddSample.addShapeFactor("DDShape") sigSample = Sample("Sig",kPink) sigSample.setNormFactor("mu_Sig",1.,0.2,1.5) sigSample.buildHisto(nSigSR,"SR","cuts",0.5) sigSample.setNormByTheory(True) sigSample.addSystematic(sigxsec) dataSample = Sample("Data",kBlack) dataSample.setData() dataSample.buildHisto(nDataCR,"CR","cuts",0.5) dataSample.buildHisto(nDataSR,"SR","cuts",0.5) # Define top-level ana = configMgr.addFitConfig("SPlusB") ana.addSamples([bkgSample,ddSample,dataSample]) # Define measurement meas = ana.addMeasurement(name="NormalMeasurement",lumi=1.0,lumiErr=0.039)
# NB: note that theoSys on diboson are applied on the level of the region definitions, # since we have one for the SR and one for the CR dibosonSample = Sample(zlFitterConfig.dibosonSampleName, kRed+3) dibosonSample.setTreeName("Diboson_SRAll") dibosonSample.setFileList(dibosonFiles) dibosonSample.setStatConfig(zlFitterConfig.useStat) #-------------------------- # QCD #-------------------------- qcdSample = Sample(zlFitterConfig.qcdSampleName, kOrange+2) if zlFitterConfig.useDDQCDsample:#normWeight is 0 => remove it qcdSample.setTreeName("Data_SRAll") else : qcdSample.setTreeName("QCD_SRAll") qcdSample.setNormFactor("mu_"+zlFitterConfig.qcdSampleName, 1., 0., 50000000.) qcdSample.setFileList(qcdFiles) qcdSample.setStatConfig(zlFitterConfig.useStat) qcdWeight = 1 nJets = channel.nJets if nJets > 0 and nJets < len(zlFitterConfig.qcdWeightList)+1: qcdWeight = zlFitterConfig.qcdWeightList[nJets-1]/ (zlFitterConfig.luminosity) if zlFitterConfig.useMCQCDsample: qcdWeight = 1 qcdSample.addWeight(str(qcdWeight)) for w in configMgr.weights: #add all other weights but not normWeight qcdSample.addWeight(w) if zlFitterConfig.useDDQCDsample:#normWeight is 0 => remove it qcdSample.removeWeight("normWeight")
topKtScale = Systematic("KtScaleTop",configMgr.weights,ktScaleTopHighWeights,ktScaleTopLowWeights,"weight","overallNormHistoSys") wzKtScale = Systematic("KtScaleWZ",configMgr.weights,ktScaleWHighWeights,ktScaleWLowWeights,"weight","overallNormHistoSys") # JES uncertainty as shapeSys - one systematic per region (combine WR and TR), merge samples jes = Systematic("JES","_NoSys","_JESup","_JESdown","tree","overallNormHistoSys") statWRwz = Systematic("SLWR_wz", "_NoSys","","","tree","shapeStat") statWRtop = Systematic("SLWR_top","_NoSys","","","tree","shapeStat") # name of nominal histogram for systematics configMgr.nomName = "_NoSys" # List of samples and their plotting colours topSample = Sample("Top",kGreen-9) topSample.setNormFactor("mu_Top",1.,0.,5.) topSample.setStatConfig(useStat) topSample.setNormRegions([("SLWR","nJet"),("SLTR","nJet")]) wzSample = Sample("WZ",kAzure+1) wzSample.setNormFactor("mu_WZ",1.,0.,5.) wzSample.setStatConfig(useStat) wzSample.setNormRegions([("SLWR","nJet"),("SLTR","nJet")]) bgSample = Sample("BG",kYellow-3) bgSample.setNormFactor("mu_BG",1.,0.,5.) bgSample.setStatConfig(useStat) bgSample.setNormRegions([("SLWR","nJet"),("SLTR","nJet")]) qcdSample = Sample("QCD",kGray+1) qcdSample.setQCD(True,"histoSys") qcdSample.setStatConfig(useStat) dataSample = Sample("Data",kBlack) dataSample.setData()
topKtScale = Systematic("KtScaleTop", configMgr.weights, ktScaleTopHighWeights, ktScaleTopLowWeights, "weight", "normHistoSys") wzKtScale = Systematic("KtScaleWZ", configMgr.weights, ktScaleWHighWeights, ktScaleWLowWeights, "weight", "normHistoSys") # JES uncertainty as shapeSys - one systematic per region (combine WR and TR), merge samples jes = Systematic("JES", "_NoSys", "_JESup", "_JESdown", "tree", "normHistoSys") mcstat = Systematic("mcstat", "_NoSys", "_NoSys", "_NoSys", "tree", "shapeStat") # name of nominal histogram for systematics configMgr.nomName = "_NoSys" # List of samples and their plotting colours topSample = Sample("Top", kGreen - 9) topSample.setNormFactor("mu_Top", 1., 0., 5.) topSample.setStatConfig(useStat) topSample.setNormRegions([("SLWR", "nJet"), ("SLTR", "nJet")]) wzSample = Sample("WZ", kAzure + 1) wzSample.setNormFactor("mu_WZ", 1., 0., 5.) wzSample.setStatConfig(useStat) wzSample.setNormRegions([("SLWR", "nJet"), ("SLTR", "nJet")]) bgSample = Sample("BG", kYellow - 3) bgSample.setNormFactor("mu_BG", 1., 0., 5.) bgSample.setStatConfig(useStat) bgSample.setNormRegions([("SLWR", "nJet"), ("SLTR", "nJet")]) qcdSample = Sample("QCD", kGray + 1) qcdSample.setQCD(True, "histoSys") qcdSample.setStatConfig(useStat) dataSample = Sample("Data", kBlack) dataSample.setData()
# Define cuts configMgr.cutsDict["UserRegion"] = "1." #Define weights configMgr.weights = "1." #Define samples bkgSample = Sample("Bkg",kGreen-9) bkgSample.setStatConfig(True) bkgSample.setNormByTheory(False) #this has to be true for samples with normalisation taken from MC, it means include lumi error (set false if data driven) bkgSample.buildHisto([nbkg],"UserRegion","cuts") bkgSample.buildStatErrors([nbkgErr],"UserRegion","cuts") bkgSample.addSystematic(ucb) sigSample = Sample("Sig",kPink) sigSample.setNormFactor("mu_Sig",1.0,0.,24645.6) sigSample.setStatConfig(True) sigSample.setNormByTheory(False) #this has to be false since xsec is scaled by mu sigSample.buildHisto([nsig],"UserRegion","cuts") sigSample.buildStatErrors([nsigErr],"UserRegion","cuts") dataSample = Sample("Data",kBlack) dataSample.setData() dataSample.buildHisto([ndata],"UserRegion","cuts") # Define top-level ana = configMgr.addFitConfig("SPlusB") ana.addSamples([bkgSample,sigSample,dataSample]) ana.setSignalSample(sigSample) # Define measurement
# -------------------------- # Diboson # -------------------------- # NB: note that theoSys on diboson are applied on the level of the region definitions, # since we have one for the SR and one for the CR dibosonSample = Sample(zlFitterConfig.dibosonSampleName, kRed + 3) dibosonSample.setTreeName("Diboson_SRAll") dibosonSample.setFileList(dibosonFiles) dibosonSample.setStatConfig(zlFitterConfig.useStat) # -------------------------- # QCD # -------------------------- qcdSample = Sample(zlFitterConfig.qcdSampleName, kOrange + 2) qcdSample.setTreeName("QCDdd_SRAll") qcdSample.setNormFactor("mu_" + zlFitterConfig.qcdSampleName, 1.0, 0.0, 500.0) qcdSample.setFileList(qcdFiles) qcdSample.setStatConfig(zlFitterConfig.useStat) qcdWeight = 1 nJets = channel.nJets if nJets > 0 and nJets < len(zlFitterConfig.qcdWeightList): qcdWeight = zlFitterConfig.qcdWeightList[nJets - 1] / (zlFitterConfig.luminosity * 1000) qcdSample.addWeight(str(qcdWeight)) for w in configMgr.weights: # ATT: there is a bug in HistFitter, I have to add the other weight by hand qcdSample.addWeight(w) # Define samples # FakePhotonSample = Sample("Bkg",kGreen-9) # FakePhotonSample.setStatConfig(False)
for region in yields_dict : configMgr.cutsDict[region] = "1." # if "CR" in region : # sample_for_cr = region.split("_")[1].lower() # if sample.name.lower() == sample_for_cr : # set_norm_by_theory = False # sample.setNormFactor("mu_%s" % sample.name.lower(), 1.0, 0.0, 10.0) # sample.setNormRegions([ (region, "cuts") ]) if set_norm_by_theory : sample.setNormByTheory() # add the samples tlx.addSamples(all_samples) # signal if myFitType == FitType.Exclusion : sample_sig.setStatConfig(True) sample_sig.setNormFactor("mu_Test", 1.0, 0.0, 10.0) sample_sig.setNormRegions( [ ("CR_BKG0", "cuts") ] )#, ("CR_BKG1", "cuts") ] ) sample_sig.setNormByTheory() tlx.addSamples(sample_sig) # tlx.setSignalSample(sample_sig) # tlx.addSignalChannels(sr_channels) if myFitType == FitType.Background : #tlx.addSignalChannels(sr_channels) tlx.addValidationChannels(sr_channels)
configMgr.cutsDict["UserRegion"] = "1." # Define weights configMgr.weights = "1." # Define samples bkgSample = Sample("Bkg",kGreen-9) bkgSample.setStatConfig(True) bkgSample.buildHisto([nbkg],"UserRegion","cuts") bkgSample.buildStatErrors([nbkgErr],"UserRegion","cuts") ### if(runMode=="exclusion"): bkgSample.addSystematic(corb) bkgSample.addSystematic(ucb) sigSample = Sample("Sig",kPink) sigSample.setNormFactor("mu_Sig",1.,normFactorMin,normFactorMax) sigSample.setStatConfig(False) sigSample.setNormByTheory(False) sigSample.buildHisto([nsig],"UserRegion","cuts") sigSample.buildStatErrors([nsigErr],"UserRegion","cuts") ### sigSample.addSystematic(cors) ### sigSample.addSystematic(ucs) ### dataSample = Sample("Data",kBlack) dataSample.setData() dataSample.buildHisto([ndata],"UserRegion","cuts") # Define top-level ana = configMgr.addTopLevelXML("SPlusB") if(runMode=="exclusion"): ana.addSamples([bkgSample,sigSample,dataSample])
# Define cuts configMgr.cutsDict["UserRegion"] = "1." # Define weights configMgr.weights = "1." # Define samples bkgSample = Sample("Bkg", kGreen - 9) bkgSample.setStatConfig(True) bkgSample.buildHisto([nbkg], "UserRegion", "cuts", 0.5) bkgSample.addSystematic(ucb) sigSample = Sample("Sig", kPink) sigSample.setNormFactor("mu_SS", 1, 0, 40) #sigSample.setStatConfig(True) sigSample.setNormByTheory() sigSample.buildHisto([nsig], "UserRegion", "cuts", 0.5) dataSample = Sample("Data", kBlack) dataSample.setData() dataSample.buildHisto([ndata], "UserRegion", "cuts", 0.5) # Define top-level ana = configMgr.addFitConfig("SPlusB") ana.addSamples([bkgSample, sigSample, dataSample]) ana.setSignalSample(sigSample) # Define measurement meas = ana.addMeasurement(name="NormalMeasurement",
# Define cuts configMgr.cutsDict["UserRegion"] = "1." # Define weights configMgr.weights = "1." # Define samples bkgSample = Sample("Bkg",kGreen-9) bkgSample.setStatConfig(True) bkgSample.buildHisto([nbkg],"UserRegion","cuts",0.5) bkgSample.addSystematic(ucb) sigSample = Sample("Sig",kPink) sigSample.setNormFactor("mu_SS",1.,0.,10.) #sigSample.setStatConfig(True) sigSample.setNormByTheory() sigSample.buildHisto([nsig],"UserRegion","cuts",0.5) dataSample = Sample("Data",kBlack) dataSample.setData() dataSample.buildHisto([ndata],"UserRegion","cuts",0.5) # Define top-level ana = configMgr.addFitConfig("SPlusB") ana.addSamples([bkgSample,sigSample,dataSample]) ana.setSignalSample(sigSample)
zvSample.setNormRegions([("emCRZV14b","cuts")]) # Add Systematics zvSample = addSys(zvSample, userOpts.doSimFit2LZV, sysObj) # Additional ZV Specific systematics if userOpts.doSimFit2LZV: #zvSample.addSystematic(sysObj.AR_all_GENZV) #zvSample.addSystematic(sysObj.AR_all_SCALEZV) #zvSample.addSystematic(sysObj.AR_all_SHOWERZV) #zvSample.addSystematic(sysObj.AR_all_PDFZV) # Specify where to take the normalization if # we are doing the simultaneous fit if 'SR1' in SR: zvSample.setNormFactor("mu_2LZV1",1.,0.,10.) elif('SR2a' in SR or 'SR2b' in SR or 'SR4a' in SR or 'SR4b' in SR or 'SR4c' in SR): zvSample.setNormFactor("mu_2LZV2a",1.,0.,10.) elif userOpts.doSimFit2LZV and 'SR5a' in SR: zvSample.setNormFactor("mu_2LZV5a",1.,0.,10.) elif('Super0a' in SR or 'Super0b' in SR or 'Super0c' in SR): zvSample.setNormFactor("mu_ZV14a",1.,0.,10.) elif('Super1a' in SR or 'Super1b' in SR or 'Super1c' in SR): zvSample.setNormFactor("mu_ZV14b",1.,0.,10.) else: zvSample.setNormByTheory() #zvSample.addSystematic(sysObj.AR_all_GENZV) #zvSample.addSystematic(sysObj.AR_all_SCALEZV) #zvSample.addSystematic(sysObj.AR_all_SHOWERZV) #zvSample.addSystematic(sysObj.AR_all_PDFZV)
# phoScaleMuWgamma = Systematic("phoScale",configMgr.weights, 1.018, 1-.018, "user","userOverallSys") # phoScaleMuttgamma = Systematic("phoScale",configMgr.weights, 1.015,1-.015, "user","userOverallSys") # phoScaleMuttbarDilep = Systematic("phoScale",configMgr.weights, 1.028, 1-.028, "user","userOverallSys") # phoScaleMust = Systematic("phoScale",configMgr.weights, 1.023, 1-.023, "user","userOverallSys") # phoScaleMudiboson = Systematic("phoScale",configMgr.weights, 1.040, 1-.040, "user","userOverallSys") # phoScaleMuZgamma = Systematic("phoScale",configMgr.weights, 1.025, 1-.025, "user","userOverallSys") ## List of samples and their plotting colours. Associate dedicated systematics if applicable. ttbargamma = Sample("ttbargamma",46) # brick ttbargamma.setNormByTheory() ttbargamma.setStatConfig(True) ttbargamma.addSystematic(ttbargammaNorm) Wgamma = Sample("Wgamma",7) # cyan Wgamma.setNormFactor("mu_Wgamma",1.,0.,5.) Wgamma.setNormRegions([("WCRhHTEl", "cuts")]) Wgamma.setStatConfig(True) #Wgamma.addSystematic(WgammaNorm) Zgamma = Sample("Zgamma",kViolet) # cyan Zgamma.setNormByTheory() Zgamma.setStatConfig(True) Zgamma.addSystematic(ZgammaNorm) Zjets = Sample("Zjets",kBlue) # cyan Zjets.setNormByTheory() Zjets.setStatConfig(True) Zjets.addSystematic(ZjetsNorm) Wjets = Sample("Wjets",3) # green
"SU_160_160_0_10", "SU_1000_280_0_10", "SU_1000_160_0_10", "SU_400_100_0_10", "SU_760_190_0_10", "SU_680_160_0_10", "SU_840_220_0_10", "SU_360_340_0_10", "SU_1080_220_0_10", "SU_360_250_0_10", "SU_760_130_0_10", "SU_440_115_0_10", "SU_240_160_0_10", "SU_200_310_0_10", "SU_200_145_0_10", "SU_600_220_0_10", "SU_280_130_0_10", "SU_520_220_0_10", "SU_1080_160_0_10", "SU_40_190_0_10", "SU_1160_160_0_10", "SU_280_310_0_10", "SU_920_160_0_10", "SU_80_190_0_10", "SU_40_310_0_10", "SU_1160_130_0_10", "SU_40_250_0_10", "SU_40_100_0_10", "SU_400_220_0_10", "SU_40_340_0_10", "SU_1000_100_0_10", "SU_120_175_0_10", "SU_280_220_0_10", "SU_760_340_0_10", "SU_240_115_0_10", "SU_440_190_0_10", "SU_1160_340_0_10", "SU_600_100_0_10", "SU_200_250_0_10", "SU_280_145_0_10", "SU_200_190_0_10", "SU_200_205_0_10", "SU_760_250_0_10", "SU_120_250_0_10", "SU_80_175_0_10", "SU_40_130_0_10", "SU_920_250_0_10", "SU_80_160_0_10", "SU_240_175_0_10", "SU_280_100_0_10", "SU_1080_310_0_10", "SU_920_340_0_10", "SU_120_115_0_10", "SU_1160_100_0_10", "SU_280_340_0_10", "SU_1160_220_0_10", "SU_200_130_0_10", "SU_160_175_0_10", "SU_360_220_0_10" ] for sig in sigSamples: myTopLvl = configMgr.addTopLevelXMLClone(bkgOnly, "SimpleChannel_%s" % sig) #myTopLvl.removeSystematic(jes) sigSample = Sample(sig, kBlue) sigSample.setNormFactor("mu_SIG", 0.5, 0., 1.) sigXSSyst = Systematic("SigXSec", None, None, None, "user", "overallSys") sigSample.addSystematic(sigXSSyst) #sigSample.addSystematic(jesSig) sigSample.setNormByTheory() myTopLvl.addSamples(sigSample) myTopLvl.setSignalSample(sigSample)
# Samples #----------------- # W/Z + jets wjets_sample = Sample('wjets', color("wjets")) zjets_sample = Sample('zjets', color("zjets")) wjets_sample.setNormByTheory() zjets_sample.setNormByTheory() # ttbar ttbar_sample = Sample('ttbar', color("ttbar")) ttbarg_sample = Sample('ttbarg', color("ttbarg")) ttbar_sample.setNormByTheory() ttbarg_sample.setNormFactor("mu_t", 1., 0., 2.) # W/Z gamma wgamma_sample = Sample('wgamma', color("wgamma")) zllgamma_sample = Sample('zllgamma', color("zllgamma")) znunugamma_sample = Sample('znunugamma', color("znunugamma")) vqqgamma_sample = Sample("vqqgamma", color('vqqgamma')) zllgamma_sample.setNormByTheory() znunugamma_sample.setNormByTheory() wgamma_sample.setNormFactor("mu_w", 1., 0., 2.) # Fake met photonjet_sample = Sample('photonjet', color("photonjet")) multijet_sample = Sample('multijet', color("multijet"))
# Define cuts configMgr.cutsDict["UserRegion"] = "1." # Define weights configMgr.weights = "1." # Define samples bkgSample = Sample("Bkg", kGreen - 9) bkgSample.setStatConfig(True) bkgSample.buildHisto([nbkg], "UserRegion", "cuts", 0.5) bkgSample.buildStatErrors([nbkgErr], "UserRegion", "cuts") bkgSample.addSystematic(corb) bkgSample.addSystematic(ucb) sigSample = Sample("Sig", kPink) sigSample.setNormFactor("mu_Sig", 1., 0., 100.) sigSample.setStatConfig(True) sigSample.setNormByTheory() sigSample.buildHisto([nsig], "UserRegion", "cuts", 0.5) sigSample.buildStatErrors([nsigErr], "UserRegion", "cuts") sigSample.addSystematic(cors) sigSample.addSystematic(ucs) dataSample = Sample("Data", kBlack) dataSample.setData() dataSample.buildHisto([ndata], "UserRegion", "cuts", 0.5) # Define top-level ana = configMgr.addFitConfig("SPlusB") ana.addSamples([bkgSample, sigSample, dataSample]) ana.setSignalSample(sigSample)
gammaToZSyst = Systematic("gammaToZSyst", configMgr.weights, 1.25,0.75, "user","userOverallSys") #------------------------------------------- # List of samples and their plotting colours #------------------------------------------- dibosonSample = Sample("Diboson",kRed+3) dibosonSample.setTreeName("Diboson_SRAll") dibosonSample.setFileList(dibosonFiles) dibosonSample.setStatConfig(useStat) dibosonSample.addSystematic(theoSysDiboson) topSample = Sample("Top",kGreen-9) topSample.setTreeName("Top_SRAll") topSample.setNormFactor("mu_Top",1.,0.,50000.) topSample.setFileList(topFiles) topSample.setStatConfig(useStat) qcdSample = Sample("MCMultijet",kOrange+2) qcdSample.setTreeName("QCD_SRAll") qcdSample.setNormFactor("mu_MCMultijet",1.,0.,500.) qcdSample.setFileList(qcdFiles) qcdSample.setStatConfig(useStat) wSample = Sample("W",kAzure+1) wSample.setTreeName("W_SRAll") wSample.setNormFactor("mu_W",1.,0.,500.) wSample.setFileList(wFiles) wSample.setStatConfig(useStat)
def common_setting(mass): from configManager import configMgr from ROOT import kBlack, kGray, kRed, kPink, kViolet, kBlue, kAzure, kGreen, \ kOrange from configWriter import Sample from systematic import Systematic import os color_dict = { "Zbb": kAzure, "Zbc": kAzure, "Zbl": kAzure, "Zcc": kAzure, "Zcl": kBlue, "Zl": kBlue, "Wbb": kGreen, "Wbc": kGreen, "Wbl": kGreen, "Wcc": kGreen, "Wcl": kGreen, "Wl": kGreen, "ttbar": kOrange, "stop": kOrange, "stopWt": kOrange, "ZZPw": kGray, "WZPw": kGray, "WWPw": kGray, "fakes": kPink, "Zjets": kAzure, "Wjets": kGreen, "top": kOrange, "diboson": kGray, "$Z\\tau\\tau$+HF": kAzure, "$Z\\tau\\tau$+LF": kBlue, "$W$+jets": kGreen, "$Zee$": kViolet, "Zhf": kAzure, "Zlf": kBlue, "Zee": kViolet, "others": kViolet, signal_prefix + "1000": kRed, signal_prefix + "1100": kRed, signal_prefix + "1200": kRed, signal_prefix + "1400": kRed, signal_prefix + "1600": kRed, signal_prefix + "1800": kRed, signal_prefix + "2000": kRed, signal_prefix + "2500": kRed, signal_prefix + "3000": kRed, # Add your new processes here "VH": kGray + 2, "VHtautau": kGray + 2, "ttH": kGray + 2, } ########################## # Setting the parameters of the hypothesis test configMgr.doExclusion = True # True=exclusion, False=discovery configMgr.nTOYs = 10000 # default=5000 configMgr.calculatorType = 0 # 2=asymptotic calculator, 0=frequentist calculator configMgr.testStatType = 3 # 3=one-sided profile likelihood test statistic (LHC default) configMgr.nPoints = 30 # number of values scanned of signal-strength for upper-limit determination of signal strength. configMgr.writeXML = False configMgr.seed = 40 configMgr.toySeedSet = True configMgr.toySeed = 400 # Pruning # - any overallSys systematic uncertainty if the difference of between the up variation and the nominal and between # the down variation and the nominal is below a certain (user) given threshold # - for histoSys types, the situation is more complex: # - a first check is done if the integral of the up histogram - the integral of the nominal histogram is smaller # than the integral of the nominal histogram and the same for the down histogram # - then a second check is done if the shape of the up, down and nominal histograms is very similar Only when both # conditions are fulfilled the systematics will be removed. # default is False, so the pruning is normally not enabled configMgr.prun = True # The threshold to decide if an uncertainty is small or not is set by configMgr.prunThreshold = 0.005 # where the number gives the fraction of deviation with respect to the nominal histogram below which an uncertainty # is considered to be small. The default is currently set to 0.01, corresponding to 1 % (This might be very aggressive # for the one or the other analyses!) configMgr.prunThreshold = 0.005 # method 1: a chi2 test (this is still a bit experimental, so watch out if this is working or not) # method 2: checking for every bin of the histograms that the difference between up variation and nominal and down (default) configMgr.prunMethod = 2 # variation and nominal is below a certain threshold. # Smoothing: HistFitter does not provide any smoothing tools. # More Details: https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/HistFitterAdvancedTutorial#Pruning_in_HistFitter ########################## # Keep SRs also in background fit confuguration configMgr.keepSignalRegionType = True configMgr.blindSR = BLIND # Give the analysis a name configMgr.analysisName = "bbtautau" + "X" + mass configMgr.histCacheFile = "data/" + configMgr.analysisName + ".root" configMgr.outputFileName = "results/" + configMgr.analysisName + "_Output.root" # Define cuts configMgr.cutsDict["SR"] = "1." # Define weights configMgr.weights = "1." # Define samples list_samples = [] yields_mass = yields[mass] for process, yields_process in yields_mass.items(): if process == 'data' or signal_prefix in process: continue # print("-> {} / Colour: {}".format(process, color_dict[process])) bkg = Sample(str(process), color_dict[process]) bkg.setStatConfig(stat_config) # OLD: add lumi uncertainty (bkg/sig correlated, not for data-driven fakes) # NOW: add lumi by hand bkg.setNormByTheory(False) noms = yields_process["nEvents"] errors = yields_process["nEventsErr"] if use_mcstat else [0.0] # print(" nEvents (StatError): {} ({})".format(noms, errors)) bkg.buildHisto(noms, "SR", my_disc, 0.5) bkg.buildStatErrors(errors, "SR", my_disc) if not stat_only and not no_syst: if process == 'fakes': key_here = "ATLAS_FF_1BTAG_SIDEBAND_Syst_hadhad" if not impact_check_continue(dict_syst_check, key_here): bkg.addSystematic( Systematic(key_here, configMgr.weights, 1.50, 0.50, "user", syst_type)) else: key_here = "ATLAS_Lumi_Run2_hadhad" if not impact_check_continue(dict_syst_check, key_here): bkg.addSystematic( Systematic(key_here, configMgr.weights, 1.017, 0.983, "user", syst_type)) for key, values in yields_process.items(): if 'ATLAS' not in key: continue if impact_check_continue(dict_syst_check, key): continue # this should not be applied on the Sherpa if process == 'Zhf' and key == 'ATLAS_DiTauSF_ZMODEL_hadhad': continue if process == 'Zlf' and key == 'ATLAS_DiTauSF_ZMODEL_hadhad': continue ups = values[0] downs = values[1] systUpRatio = [ u / n if n != 0. else float(1.) for u, n in zip(ups, noms) ] systDoRatio = [ d / n if n != 0. else float(1.) for d, n in zip(downs, noms) ] bkg.addSystematic( Systematic(str(key), configMgr.weights, systUpRatio, systDoRatio, "user", syst_type)) list_samples.append(bkg) # FIXME: This is unusual! top = Sample('top', kOrange) top.setStatConfig(False) # No stat error top.setNormByTheory(False) # consider lumi for it top.buildHisto([0.00001], "SR", my_disc, 0.5) # small enough # HistFitter can accept such large up ratio # Systematic(name, weight, ratio_up, ratio_down, syst_type, syst_fistfactory_type) if not stat_only and not no_syst: key_here = 'ATLAS_TTBAR_YIELD_UPPER_hadhad' if not impact_check_continue(dict_syst_check, key_here): top.addSystematic( Systematic(key_here, configMgr.weights, unc_ttbar[mass], 0.9, "user", syst_type)) list_samples.append(top) sigSample = Sample("Sig", kRed) sigSample.setNormFactor("mu_Sig", 1., 0., 100.) #sigSample.setStatConfig(stat_config) sigSample.setStatConfig(False) sigSample.setNormByTheory(False) noms = yields_mass[signal_prefix + mass]["nEvents"] errors = yields_mass[signal_prefix + mass]["nEventsErr"] if use_mcstat else [0.0] sigSample.buildHisto([n * MY_SIGNAL_NORM * 1e-3 for n in noms], "SR", my_disc, 0.5) #sigSample.buildStatErrors(errors, "SR", my_disc) for key, values in yields_mass[signal_prefix + mass].items(): if 'ATLAS' not in key: continue if impact_check_continue(dict_syst_check, key): continue ups = values[0] downs = values[1] systUpRatio = [ u / n if n != 0. else float(1.) for u, n in zip(ups, noms) ] systDoRatio = [ d / n if n != 0. else float(1.) for d, n in zip(downs, noms) ] if not stat_only and not no_syst: sigSample.addSystematic( Systematic(str(key), configMgr.weights, systUpRatio, systDoRatio, "user", syst_type)) if not stat_only and not no_syst: key_here = "ATLAS_SigAccUnc_hadhad" if not impact_check_continue(dict_syst_check, key_here): sigSample.addSystematic( Systematic(key_here, configMgr.weights, [1 + unc_sig_acc[mass] for i in range(my_nbins)], [1 - unc_sig_acc[mass] for i in range(my_nbins)], "user", syst_type)) key_here = "ATLAS_Lumi_Run2_hadhad" if not impact_check_continue(dict_syst_check, key_here): sigSample.addSystematic( Systematic(key_here, configMgr.weights, 1.017, 0.983, "user", syst_type)) list_samples.append(sigSample) # Set observed and expected number of events in counting experiment n_SPlusB = yields_mass[signal_prefix + mass]["nEvents"][0] + sum_of_bkg(yields_mass)[0] n_BOnly = sum_of_bkg(yields_mass)[0] if BLIND: # configMgr.useAsimovSet = True # Use the Asimov dataset # configMgr.generateAsimovDataForObserved = True # Generate Asimov data as obsData for UL # configMgr.useSignalInBlindedData = False ndata = sum_of_bkg(yields_mass) else: try: ndata = yields_mass["data"]["nEvents"] except: ndata = [0. for _ in range(my_nbins)] lumiError = 0.017 # Relative luminosity uncertainty dataSample = Sample("Data", kBlack) dataSample.setData() dataSample.buildHisto(ndata, "SR", my_disc, 0.5) list_samples.append(dataSample) # Define top-level ana = configMgr.addFitConfig("SPlusB") ana.addSamples(list_samples) ana.setSignalSample(sigSample) # Define measurement meas = ana.addMeasurement(name="NormalMeasurement", lumi=1.0, lumiErr=lumiError / 100000.) # make it very small so that pruned # we use the one added by hand meas.addPOI("mu_Sig") #meas.statErrorType = "Poisson" # Fix the luminosity in HistFactory to constant meas.addParamSetting("Lumi", True, 1) # Add the channel chan = ana.addChannel(my_disc, ["SR"], my_nbins, my_xmin, my_xmax) chan.blind = BLIND #chan.statErrorType = "Poisson" ana.addSignalChannels([chan]) # These lines are needed for the user analysis to run # Make sure file is re-made when executing HistFactory if configMgr.executeHistFactory: if os.path.isfile("data/%s.root" % configMgr.analysisName): os.remove("data/%s.root" % configMgr.analysisName)
# Define cuts configMgr.cutsDict["UserRegion"] = "1." # Define weights configMgr.weights = "1." # Define samples bkgSample = Sample("Bkg",kGreen-9) bkgSample.setStatConfig(True) bkgSample.buildHisto([nbkg],"UserRegion","cuts",0.5) bkgSample.buildStatErrors([nbkgErr],"UserRegion","cuts") bkgSample.addSystematic(corb) bkgSample.addSystematic(ucb) sigSample = Sample("Sig",kPink) sigSample.setNormFactor("mu_Sig",1.,0.,100.) sigSample.setStatConfig(True) sigSample.setNormByTheory() sigSample.buildHisto([nsig],"UserRegion","cuts",0.5) sigSample.buildStatErrors([nsigErr],"UserRegion","cuts") sigSample.addSystematic(cors) sigSample.addSystematic(ucs) dataSample = Sample("Data",kBlack) dataSample.setData() dataSample.buildHisto([ndata],"UserRegion","cuts",0.5) # Define top-level ana = configMgr.addFitConfig("SPlusB") ana.addSamples([bkgSample,sigSample,dataSample]) ana.setSignalSample(sigSample)
# Samples #----------------- # W/Z + jets wjets_sample = Sample('wjets', color("wjets")) zjets_sample = Sample('zjets', color("zjets")) wjets_sample.setNormByTheory() zjets_sample.setNormByTheory() # ttbar ttbar_sample = Sample('ttbar', color("ttbar")) ttbarg_sample = Sample('ttgamma', color("ttbarg")) ttbar_sample.setNormByTheory() ttbarg_sample.setNormFactor("mu_t", 1., 0., 2.) # W/Z gamma wgamma_sample = Sample('wgamma', color("wgamma")) zllgamma_sample = Sample('zllgamma', color("zllgamma")) znunugamma_sample = Sample('znunugamma', color("znunugamma")) vqqgamma_sample = Sample("vqqgamma", color('vqqgamma')) zllgamma_sample.setNormByTheory() znunugamma_sample.setNormByTheory() wgamma_sample.setNormFactor("mu_w", 1., 0., 2.) # Fake met photonjet_sample = Sample('photonjet', color("photonjet")) multijet_sample = Sample('multijet', color("multijet"))
# Determine the normalization region : # --> If zero jet : pick "a" CR # --> If one jet : pick "b" CR if userOpts.doSimFit2LZV : if('Super0a' in SR or 'Super0b' in SR or 'Super0c' in SR) : zvSample.setNormRegions([("emCRZV14a", "cuts")]) userPrint(" >>> Normalization region for ZV : emCRZV14a") elif('Super1a' in SR or 'Super1b' in SR or 'Super1c' in SR) : zvSample.setNormRegions([("emCRZV14b", "cuts")]) userPrint(" >>> Normalization region for ZV : emCRZV14b") # add systematics zvSample = addSys(zvSample, userOpts.doSimFit2LZV, sysObj) # set normalization factor if userOpts.doSimFit2LZV : if('Super0a' in SR or 'Super0b' in SR or 'Super0c' in SR) : zvSample.setNormFactor("mu_ZV14a", 1.,0.,10.) userPrint(" >>> Normalization factor for ZV : mu_ZV14a") elif('Super1a' in SR or 'Super1b' in SR or 'Super1c' in SR) : zvSample.setNormFactor("mu_ZV14b", 1., 0., 10.) userPrint(" >>> Normalization factor for ZV : mu_ZV14b") else : zvSample.setNormByTheory() # ----------------------------------------------------- # # TOP # # ----------------------------------------------------- # topSample.setStatConfig(useStat) if userOpts.splitMCSys : topSample.addSystematic(sysObj.AR_mcstat_TOP)
## Discovery fit #discovery = configMgr.adFitConfigClone(bkgOnly,"SimpleChannel_Discovery") #discovery.clearSystematics() #sigSample = Sample("discoveryMode",kBlue) #sigSample.setNormFactor("mu_SIG",1.0, 0.0, 5.0) #sigSample.setNormByTheory() #discovery.addSamples(sigSample) #discovery.setSignalSample(sigSample) ## Exclusion fits (MSUGRA grid) #sigSamples=["SU_180_360_0_10","SU_580_240_0_10","SU_740_330_0_10","SU_900_420_0_10","SU_1300_210_0_10"] sigSamples = ["SU_680_310_0_10","SU_440_145_0_10","SU_200_160_0_10","SU_440_340_0_10","SU_440_100_0_10","SU_120_130_0_10","SU_600_280_0_10","SU_320_115_0_10","SU_360_175_0_10","SU_920_310_0_10","SU_280_205_0_10","SU_1080_340_0_10","SU_40_280_0_10","SU_760_160_0_10","SU_200_115_0_10","SU_280_280_0_10","SU_40_160_0_10","SU_520_280_0_10","SU_120_220_0_10","SU_680_220_0_10","SU_40_115_0_10","SU_920_190_0_10","SU_320_130_0_10","SU_440_280_0_10","SU_360_100_0_10","SU_120_160_0_10","SU_1080_190_0_10","SU_840_250_0_10","SU_120_100_0_10","SU_120_340_0_10","SU_840_280_0_10","SU_80_115_0_10","SU_840_130_0_10","SU_320_175_0_10","SU_120_205_0_10","SU_520_100_0_10","SU_400_130_0_10","SU_360_310_0_10","SU_160_115_0_10","SU_1000_310_0_10","SU_40_220_0_10","SU_440_130_0_10","SU_1000_190_0_10","SU_80_220_0_10","SU_840_160_0_10","SU_120_145_0_10","SU_440_175_0_10","SU_360_280_0_10","SU_320_145_0_10","SU_400_160_0_10","SU_1000_340_0_10","SU_600_310_0_10","SU_320_190_0_10","SU_840_310_0_10","SU_200_220_0_10","SU_440_205_0_10","SU_360_205_0_10","SU_120_280_0_10","SU_1080_130_0_10","SU_160_145_0_10","SU_520_250_0_10","SU_840_100_0_10","SU_160_220_0_10","SU_120_190_0_10","SU_40_205_0_10","SU_280_250_0_10","SU_80_145_0_10","SU_200_175_0_10","SU_840_190_0_10","SU_240_145_0_10","SU_160_205_0_10","SU_400_115_0_10","SU_440_250_0_10","SU_600_340_0_10","SU_80_100_0_10","SU_520_190_0_10","SU_1160_190_0_10","SU_80_130_0_10","SU_400_190_0_10","SU_400_175_0_10","SU_600_130_0_10","SU_1080_100_0_10","SU_200_340_0_10","SU_1160_310_0_10","SU_440_160_0_10","SU_240_220_0_10","SU_200_100_0_10","SU_240_130_0_10","SU_360_130_0_10","SU_1000_250_0_10","SU_920_130_0_10","SU_240_190_0_10","SU_520_340_0_10","SU_40_175_0_10","SU_240_100_0_10","SU_400_145_0_10","SU_40_145_0_10","SU_240_205_0_10","SU_1080_280_0_10","SU_600_250_0_10","SU_360_145_0_10","SU_520_130_0_10","SU_1000_130_0_10","SU_440_310_0_10","SU_600_160_0_10","SU_920_280_0_10","SU_760_280_0_10","SU_280_190_0_10","SU_280_175_0_10","SU_120_310_0_10","SU_440_220_0_10","SU_1000_220_0_10","SU_1160_250_0_10","SU_400_205_0_10","SU_160_160_0_10","SU_1000_280_0_10","SU_1000_160_0_10","SU_400_100_0_10","SU_760_190_0_10","SU_680_160_0_10","SU_840_220_0_10","SU_360_340_0_10","SU_1080_220_0_10","SU_360_250_0_10","SU_760_130_0_10","SU_440_115_0_10","SU_240_160_0_10","SU_200_310_0_10","SU_200_145_0_10","SU_600_220_0_10","SU_280_130_0_10","SU_520_220_0_10","SU_1080_160_0_10","SU_40_190_0_10","SU_1160_160_0_10","SU_280_310_0_10","SU_920_160_0_10","SU_80_190_0_10","SU_40_310_0_10","SU_1160_130_0_10","SU_40_250_0_10","SU_40_100_0_10","SU_400_220_0_10","SU_40_340_0_10","SU_1000_100_0_10","SU_120_175_0_10","SU_280_220_0_10","SU_760_340_0_10","SU_240_115_0_10","SU_440_190_0_10","SU_1160_340_0_10","SU_600_100_0_10","SU_200_250_0_10","SU_280_145_0_10","SU_200_190_0_10","SU_200_205_0_10","SU_760_250_0_10","SU_120_250_0_10","SU_80_175_0_10","SU_40_130_0_10","SU_920_250_0_10","SU_80_160_0_10","SU_240_175_0_10","SU_280_100_0_10","SU_1080_310_0_10","SU_920_340_0_10","SU_120_115_0_10","SU_1160_100_0_10","SU_280_340_0_10","SU_1160_220_0_10","SU_200_130_0_10","SU_160_175_0_10","SU_360_220_0_10"] #if not 'sigSamples' in dir(): # sigSamples=["SU_680_310_0_10"] for sig in sigSamples: myTopLvl = configMgr.addFitConfigClone(bkgOnly,"SimpleChannel_%s"%sig) #myTopLvl.removeSystematic(jes) sigSample = Sample(sig,kBlue) sigSample.setNormFactor("mu_SIG", 1.0, 0., 5.0) sigXSSyst = Systematic("SigXSec",configMgr.weights,1.1,0.9,"user","overallSys") sigSample.addSystematic(sigXSSyst) #sigSample.addSystematic(jesSig) sigSample.setNormByTheory() myTopLvl.addSamples(sigSample) myTopLvl.setSignalSample(sigSample) ch = myTopLvl.getChannel("cuts",cutsRegions) myTopLvl.addSignalChannels(ch)
#photon systematics in SR for Z gammaToZSyst = Systematic("gammaToZSyst", configMgr.weights, 1.25, 0.75, "user", "userOverallSys") #------------------------------------------- # List of samples and their plotting colours #------------------------------------------- dibosonSample = Sample("Diboson", kRed + 3) dibosonSample.setTreeName("Diboson_SRAll") dibosonSample.setFileList(dibosonFiles) dibosonSample.setStatConfig(useStat) dibosonSample.addSystematic(theoSysDiboson) topSample = Sample("Top", kGreen - 9) topSample.setTreeName("Top_SRAll") topSample.setNormFactor("mu_Top", 1., 0., 500.) topSample.setFileList(topFiles) topSample.setStatConfig(useStat) qcdSample = Sample("MCMultijet", kOrange + 2) qcdSample.setTreeName("QCD_SRAll") qcdSample.setNormFactor("mu_MCMultijet", 1., 0., 500.) qcdSample.setFileList(qcdFiles) qcdSample.setStatConfig(useStat) wSample = Sample("W", kAzure + 1) wSample.setTreeName("W_SRAll") wSample.setNormFactor("mu_W", 1., 0., 500.) wSample.setFileList(wFiles) wSample.setStatConfig(useStat)
bkgOnly.addSystematic(jes) meas = bkgOnly.addMeasurement(measName,measLumi,measLumiError) meas.addPOI("mu_SIG") cutsChannel = bkgOnly.addChannel("cuts",cutsRegions,cutsNBins,cutsBinLow,cutsBinHigh) ## Discovery fit #discovery = configMgr.addTopLevelXMLClone(bkgOnly,"SimpleChannel_Discovery") #discovery.clearSystematics() #sigSample = Sample("discoveryMode",kBlue) #sigSample.setNormFactor("mu_SIG",0.5,0.,1.) #sigSample.setNormByTheory() #discovery.addSamples(sigSample) #discovery.setSignalSample(sigSample) ## Exclusion fits (MSUGRA grid) #sigSamples=["SU_180_360_0_10","SU_580_240_0_10","SU_740_330_0_10","SU_900_420_0_10","SU_1300_210_0_10"] sigSamples = ["SU_680_310_0_10","SU_440_145_0_10","SU_200_160_0_10","SU_440_340_0_10","SU_440_100_0_10","SU_120_130_0_10","SU_600_280_0_10","SU_320_115_0_10","SU_360_175_0_10","SU_920_310_0_10","SU_280_205_0_10","SU_1080_340_0_10","SU_40_280_0_10","SU_760_160_0_10","SU_200_115_0_10","SU_280_280_0_10","SU_40_160_0_10","SU_520_280_0_10","SU_120_220_0_10","SU_680_220_0_10","SU_40_115_0_10","SU_920_190_0_10","SU_320_130_0_10","SU_440_280_0_10","SU_360_100_0_10","SU_120_160_0_10","SU_1080_190_0_10","SU_840_250_0_10","SU_120_100_0_10","SU_120_340_0_10","SU_840_280_0_10","SU_80_115_0_10","SU_840_130_0_10","SU_320_175_0_10","SU_120_205_0_10","SU_520_100_0_10","SU_400_130_0_10","SU_360_310_0_10","SU_160_115_0_10","SU_1000_310_0_10","SU_40_220_0_10","SU_440_130_0_10","SU_1000_190_0_10","SU_80_220_0_10","SU_840_160_0_10","SU_120_145_0_10","SU_440_175_0_10","SU_360_280_0_10","SU_320_145_0_10","SU_400_160_0_10","SU_1000_340_0_10","SU_600_310_0_10","SU_320_190_0_10","SU_840_310_0_10","SU_200_220_0_10","SU_440_205_0_10","SU_360_205_0_10","SU_120_280_0_10","SU_1080_130_0_10","SU_160_145_0_10","SU_520_250_0_10","SU_840_100_0_10","SU_160_220_0_10","SU_120_190_0_10","SU_40_205_0_10","SU_280_250_0_10","SU_80_145_0_10","SU_200_175_0_10","SU_840_190_0_10","SU_240_145_0_10","SU_160_205_0_10","SU_400_115_0_10","SU_440_250_0_10","SU_600_340_0_10","SU_80_100_0_10","SU_520_190_0_10","SU_1160_190_0_10","SU_80_130_0_10","SU_400_190_0_10","SU_400_175_0_10","SU_600_130_0_10","SU_1080_100_0_10","SU_200_340_0_10","SU_1160_310_0_10","SU_440_160_0_10","SU_240_220_0_10","SU_200_100_0_10","SU_240_130_0_10","SU_360_130_0_10","SU_1000_250_0_10","SU_920_130_0_10","SU_240_190_0_10","SU_520_340_0_10","SU_40_175_0_10","SU_240_100_0_10","SU_400_145_0_10","SU_40_145_0_10","SU_240_205_0_10","SU_1080_280_0_10","SU_600_250_0_10","SU_360_145_0_10","SU_520_130_0_10","SU_1000_130_0_10","SU_440_310_0_10","SU_600_160_0_10","SU_920_280_0_10","SU_760_280_0_10","SU_280_190_0_10","SU_280_175_0_10","SU_120_310_0_10","SU_440_220_0_10","SU_1000_220_0_10","SU_1160_250_0_10","SU_400_205_0_10","SU_160_160_0_10","SU_1000_280_0_10","SU_1000_160_0_10","SU_400_100_0_10","SU_760_190_0_10","SU_680_160_0_10","SU_840_220_0_10","SU_360_340_0_10","SU_1080_220_0_10","SU_360_250_0_10","SU_760_130_0_10","SU_440_115_0_10","SU_240_160_0_10","SU_200_310_0_10","SU_200_145_0_10","SU_600_220_0_10","SU_280_130_0_10","SU_520_220_0_10","SU_1080_160_0_10","SU_40_190_0_10","SU_1160_160_0_10","SU_280_310_0_10","SU_920_160_0_10","SU_80_190_0_10","SU_40_310_0_10","SU_1160_130_0_10","SU_40_250_0_10","SU_40_100_0_10","SU_400_220_0_10","SU_40_340_0_10","SU_1000_100_0_10","SU_120_175_0_10","SU_280_220_0_10","SU_760_340_0_10","SU_240_115_0_10","SU_440_190_0_10","SU_1160_340_0_10","SU_600_100_0_10","SU_200_250_0_10","SU_280_145_0_10","SU_200_190_0_10","SU_200_205_0_10","SU_760_250_0_10","SU_120_250_0_10","SU_80_175_0_10","SU_40_130_0_10","SU_920_250_0_10","SU_80_160_0_10","SU_240_175_0_10","SU_280_100_0_10","SU_1080_310_0_10","SU_920_340_0_10","SU_120_115_0_10","SU_1160_100_0_10","SU_280_340_0_10","SU_1160_220_0_10","SU_200_130_0_10","SU_160_175_0_10","SU_360_220_0_10"] for sig in sigSamples: myTopLvl = configMgr.addTopLevelXMLClone(bkgOnly,"SimpleChannel_%s"%sig) #myTopLvl.removeSystematic(jes) sigSample = Sample(sig,kBlue) sigSample.setNormFactor("mu_SIG",0.5,0.,1.) sigXSSyst = Systematic("SigXSec",None,None,None,"user","overallSys") sigSample.addSystematic(sigXSSyst) #sigSample.addSystematic(jesSig) sigSample.setNormByTheory() myTopLvl.addSamples(sigSample) myTopLvl.setSignalSample(sigSample)
configMgr.outputFileName = "results/%s_Output.root" % configMgr.analysisName # Define cuts configMgr.cutsDict["SR"] = "1." # Define weights configMgr.weights = "1." # Define samples bkgSample = Sample("Bkg", ROOT.kGreen - 9) bkgSample.setStatConfig(True) bkgSample.buildHisto([nbkg], "SR", "cuts", 0.5) bkgSample.addSystematic(ucb) sigSample = Sample("GGM_GG_bhmix_%d_%d" % (args.m3, args.mu), ROOT.kOrange + 3) sigSample.setNormFactor("mu_SIG", 1., 0., 10.) #sigSample.setStatConfig(True) sigSample.setNormByTheory() sigSample.buildHisto([nsig], "SR", "cuts", 0.5) dataSample = Sample("Data", ROOT.kBlack) dataSample.setData() dataSample.buildHisto([ndata], "SR", "cuts", 0.5) # Define top-level ana = configMgr.addFitConfig("Disc") ana.addSamples([bkgSample, sigSample, dataSample]) ana.setSignalSample(sigSample) # Define measurement meas = ana.addMeasurement(name="NormalMeasurement",
zvSample.setStatConfig(useStat) if userOpts.splitMCSys: zvSample.addSystematic(sysObj.AR_mcstat_ZV) # Determine the normalization region # This should be done only if we fit # Regardless of channel combined ee+mm if userOpts.doSimFit2LZV: zvSample.setNormRegions([("emCRZV14a","cuts"),("emCRZV14b","cuts")]) # Add Systematics zvSample = addSys(zvSample, userOpts.doSimFit2LZV, sysObj) # Additional ZV Specific systematics if userOpts.doSimFit2LZV: zvSample.setNormFactor("mu_ZV",1.,0.,10.) else: zvSample.setNormByTheory() #------------------------------------------------# # TOP # #------------------------------------------------# topSample.setStatConfig(useStat) if userOpts.splitMCSys: topSample.addSystematic(sysObj.AR_mcstat_TOP) # Determine the normalization regions # This should be done only if we fit if userOpts.doSimFit2LTop : topSample.setNormRegions([("emCRTop14a","cuts"), ("emCRTop14b","cuts")])
signal_sample = None # prepare the fit configuration ana = configMgr.addFitConfig("shape_fit") meas = ana.addMeasurement(name="shape_fit", lumi=1.0, lumiErr=0.01) # load all MC templates ... for sample_name, template_name, template_color, is_floating, is_signal in zip( sample_names, template_names, template_colors, normalization_floating, signal_samples): cur_sample = Sample(sample_name, template_color) if is_floating: normalization_name = "mu_" + sample_name cur_sample.setNormFactor(normalization_name, 1, 0, 100) if is_signal: POIs.append(normalization_name) signal_sample = cur_sample # ... for all regions for region_name, region_infile in zip(region_names, region_infiles): binvals, edges = HistogramImporter.import_histogram( os.path.join(indir, region_infile), template_name) bin_width = edges[1] - edges[0] cur_sample.buildHisto(binvals, region_name, "mBB", binLow=edges[0],
# - List of systematics # --------------------- # generic systematic -- placeholder for now gen_syst = Systematic( "gen_syst" , configMgr.weights , 1.0 + 0.30 , 1.0 - 0.30 , "user" , "userOverallSys" ) # JES uncertainty as shapeSys - one systematic per region (combine WR and TR), merge samples # jes = Systematic("JES","_NoSys","_JESup","_JESdown","tree","overallNormHistoSys") # -------------------------------------------- # - List of samples and their plotting colours # -------------------------------------------- sample_list = [] # ttbar ttbar_sample = Sample( "ttbar" , kGreen-2 ) ttbar_sample.setNormFactor("mu_ttbar",1.,0.,5.) ttbar_sample.setStatConfig(use_stat) ttbar_sample.setNormByTheory() sample_list.append(ttbar_sample) # single top single_top_sample = Sample( "SingleTop" , kGreen-1 ) single_top_sample.setNormFactor("mu_st",1.,0.,5.) single_top_sample.setStatConfig(use_stat) single_top_sample.setNormByTheory() sample_list.append(single_top_sample) # Z/gamma* z_sample = Sample( "Z" , kRed+1 ) z_sample.setNormFactor("mu_z",1.,0.,5.) z_sample.setStatConfig(use_stat)
# ************** # Fit config instance exclusionFitConfig = configMgr.addTopLevelXML("Exclusion") meas = exclusionFitConfig.addMeasurement(name="NormalMeasurement", lumi=1.0, lumiErr=0.039) meas.addPOI("mu_SIG") # Samples exclusionFitConfig.addSamples([topSample, wzSample, dataSample]) # Systematics exclusionFitConfig.getSample("Top").addSystematic(topKtScale) exclusionFitConfig.getSample("WZ").addSystematic(wzKtScale) exclusionFitConfig.addSystematic(jes) # Channel srBin = exclusionFitConfig.addChannel("met/meff2Jet", ["SR"], 6, 0.1, 0.7) srBin.useOverflowBin = True srBin.useUnderflowBin = True exclusionFitConfig.setSignalChannels([srBin]) sigSample = Sample("SM_GG_onestepCC_425_385_345", kPink) sigSample.setFileList(["samples/tutorial/SusyFitterTree_p832_GG-One-Step_soft_v1.root"]) sigSample.setNormByTheory() sigSample.setNormFactor("mu_SIG", 1.0, 0.0, 5.0) exclusionFitConfig.addSamples(sigSample) exclusionFitConfig.setSignalSample(sigSample) # 2nd cloned-copy just to accomodate -l option... exclusionFitClone = configMgr.addTopLevelXMLClone(exclusionFitConfig, "ExclusionFitClone")
exclusionFitConfig = configMgr.addFitConfig("Exclusion_"+sig) meas=exclusionFitConfig.addMeasurement(name="NormalMeasurement",lumi=1.0,lumiErr=0.039) meas.addPOI("mu_SIG") # Samples exclusionFitConfig.addSamples([topSample,wzSample,dataSample]) # Systematics exclusionFitConfig.getSample("Top").addSystematic(topKtScale) exclusionFitConfig.getSample("WZ").addSystematic(wzKtScale) exclusionFitConfig.addSystematic(jes) # Channel srBin = exclusionFitConfig.addChannel("met/meff2Jet",["SR"],6,0.1,0.7) srBin.useOverflowBin=True srBin.useUnderflowBin=True exclusionFitConfig.setSignalChannels([srBin]) sigSample = Sample(sig,kPink) sigSample.setFileList(["samples/tutorial/SusyFitterTree_p832_GG-One-Step_soft_v1.root"]) sigSample.setNormByTheory() sigSample.setNormFactor("mu_SIG",1.,0.,5.) #sigSample.addSampleSpecificWeight("0.001") exclusionFitConfig.addSamples(sigSample) exclusionFitConfig.setSignalSample(sigSample) # Cosmetics srBin.minY = 0.0001 srBin.maxY = 80.
configMgr.cutsDict[region] = "1." if "CR" in region and "BKG" in region and perform_simfit : sample_for_cr = region.split("_")[1].lower() if sample.name.lower() == sample_for_cr : set_norm_by_theory = False sample.setNormFactor("mu_%s" % sample.name.lower(), 1.0, 0.0, 10.0) sample.setNormRegions([ (region, "cuts") ]) if set_norm_by_theory : sample.setNormByTheory() # signal if myFitType == FitType.Exclusion : sample_sig.setStatConfig(False) sample_sig.setNormFactor("mu_SIG", 1.0, 0.0, 10.0) sample_sig.setNormRegions( [ ("SR_BKG0", "cuts") ] )#, ("CR_BKG1", "cuts") ] ) sample_sig.setNormByTheory() #tlx.addSamples(sample_sig) tlx.setSignalSample(sample_sig) tlx.addSignalChannels(sr_channels) # add the samples tlx.addSamples(all_samples) #if myFitType == FitType.Background : # tlx.addSignalChannels(cr_channels) # #tlx.addSignalChannels(sr_channels) # #tlx.addValidationChannels(sr_channels)