コード例 #1
0
def main():
    global config
    USE_CLASSIFIER='lstm'

    weight_file_path = Config.getPath('models') + '/' + USE_CLASSIFIER + '-weights.h5'

    load_config(USE_CLASSIFIER)

    classifier=ClassifierFactory.getLSTM(**{'config':config})
    #Classifier(model_name=USE_CLASSIFIER,config=config)

    classifier.load_weights(weight_file_path)

    df = pd.read_csv(Config.getPath('data') + '/' + TESTING_DATA)

    Xtest = df['question_text']
    Ytest = df['target']

    print('extract configuration from input texts ...')

    print('testing size: ', len(Xtest))

    print('start predicting ...')
    pred = classifier.predict(Xtest)
    print(pred)
    score = metrics.accuracy_score(Ytest, pred)
    print("accuracy:   %0.3f" % score)
    cm = metrics.confusion_matrix(Ytest, pred, labels=[0, 1])
    plot_confusion_matrix(cm, classes=[0, 1])
コード例 #2
0
ファイル: config_wizard.py プロジェクト: jeis2497052/cbt
def main():
    args = parse_arguments()
    hosts = get_hosts(args.automate)
    user = get_user(args.automate)
    tmp_dir = get_tmp_dir(args.automate)
    conf = Config(args.output_file, hosts, user, tmp_dir)
    if args.automate:
        rbdfio = RbdFio(True, conf)
        kvmrbdfio = KvmRbdFio(True, conf)
        radosbench = Radosbench(True, conf)
        conf.add_benchmark_settings(rbdfio.output)
        conf.add_benchmark_settings(kvmrbdfio.output)
        conf.add_benchmark_settings(radosbench.output)
    else:
        tests = select_tests()
        for test in tests:
            use_default = False
            print "\nEntering settings for %s:" % (test)
            while True:
                try:
                    default = raw_input("Would you like to use default"
                                        " settings for %s [y/n]? " % (test))
                except KeyboardInterrupt:
                    print "Aborting script. No data will be saved."
                    sys.exit(1)
                if default.lower() == "y":
                    print "Using default values for %s" % (test)
                    use_default = True
                    break
                elif default.lower() == "n":
                    use_default = False
                    break
            generate_test_values(test, use_default, conf)
    conf.save_file()
    print "Output saved to: %s" % (conf.out_file)
コード例 #3
0
ファイル: config_wizard.py プロジェクト: ASBishop/cbt
def main():
    args = parse_arguments()
    hosts = get_hosts(args.automate)
    user = get_user(args.automate)
    tmp_dir = get_tmp_dir(args.automate)
    conf = Config(args.output_file, hosts, user, tmp_dir)
    if args.automate:
        rbdfio = RbdFio(True, conf)
        kvmrbdfio = KvmRbdFio(True, conf)
        radosbench = Radosbench(True, conf)
        conf.add_benchmark_settings(rbdfio.output)
        conf.add_benchmark_settings(kvmrbdfio.output)
        conf.add_benchmark_settings(radosbench.output)
    else:
        tests = select_tests()
        for test in tests:
            use_default = False
            print "\nEntering settings for %s:" % (test)
            while True:
                try:
                    default = raw_input("Would you like to use default"
                                        " settings for %s [y/n]? " % (test))
                except KeyboardInterrupt:
                    print "Aborting script. No data will be saved."
                    sys.exit(1)
                if default.lower() == "y":
                    print "Using default values for %s" % (test)
                    use_default = True
                    break
                elif default.lower() == "n":
                    use_default = False
                    break
            generate_test_values(test, use_default, conf)
    conf.save_file()
    print "Output saved to: %s" % (conf.out_file)
コード例 #4
0
ファイル: azqa_instrument.py プロジェクト: toddie123/AZQA
    def __init__(self, ID, spreadsheet_path):

        self.ID = ID
        self.spreadsheet = spreadsheet_path
        self.tool_type = ""
        self.use_limit = ""
        self.cal_date = ""
        self.cal_exp = ""
        self.log_path = ""
        self.cert_path = ""
        # DONE CHANGE SHEETROW TO BLANK
        self.sheetrow = None  # row that contains data for ID of interest
        self.use = ""
        self.use_limit = None
        self.location = ""
        self.exp_type = ""
        self.status = 'GOOD FOR USE'
        self.legacyID_col = 1

        # DONE REMOVE BELOW

        self.ID_col = 2  # Col that contains IDs default from sheet as of 02/01/2021 can be set externally

        self.df = pd.read_csv(
            spreadsheet_path,
            encoding='UTF-8')  # big thank 6294 for selling me csv ;)
        self.config = Config()
コード例 #5
0
def process_in_multiple_cfg(image, cfg_ls=['Configs/config1.py',
    'Configs/config2.py','Configs/config3.py'], is_visualize=False):
    r"""Full process in multiple config
        Args:
            path:str, path to a single image
            cfg_ls: list of class Config 
            is_visualize:Boolen,whether or not visualization
    """

    ls = []
    for cfg in cfg_ls:
        cfg = Config(cfg)
        res = process_in_single_cfg(image, cfg)
        if res != None:
            ls.append(res)
    
    if len(ls)>0:
        if is_visualize == True:
            cv2.line(image, (int(sum(ls)/len(ls)),0), (int(sum(ls)/len(ls)),
                image.shape[0]), (255,255,0), thickness=4, lineType=8, shift=0)
            cv2.imshow('result', image)
            cv2.waitKey(0)
        return int(sum(ls)/len(ls))
    else:
        return None
コード例 #6
0
def load_config(model_name):
    print('loading csv file ...')
    global config

    config_file_path = Config.getPath('models') + '/' + model_name + '-config.joblib'

    config = ClassifierFactory.getConfig(joblib_file=config_file_path)

    #Two classes - Fake=0, Reliable=1
    config.set('num_target_tokens',2)
コード例 #7
0
ファイル: svm.py プロジェクト: AndyTheFactory/SSL
def predict_svm():
    global config
    load_config('svm')

    print('loading data...')
    df = pd.read_csv(Config.getPath('data') + '/' + TRAINING_DATA)

    df2 = df.sample(50000)

    X = df2['question_text']
    Y = df2['target']

    Xtrain, Xtest, Ytrain, Ytest = train_test_split(X,
                                                    Y,
                                                    test_size=0.2,
                                                    random_state=42)
    # Two classes - Fake=0, Reliable=1
    config.set('num_target_tokens', 2)

    classifier = ClassifierFactory.getSVM()

    print('training size: ', len(Xtrain))
    print('testing size: ', len(Xtest))

    print('start fitting ...')

    classifier.fit(Xtrain, Ytrain, Xtest, Ytest)

    df = pd.read_csv(Config.getPath('data') + '/' + TESTING_DATA)

    df = df.sample(100000)
    X = df['question_text']
    Y = df['target']

    pred = classifier.predict(X)

    score = metrics.accuracy_score(Y, pred)
    f1score = metrics.f1_score(Y, pred)
    print("accuracy:   %0.3f" % score)
    print("f1 score:   %0.3f" % f1score)

    cm = metrics.confusion_matrix(Ytest, pred, labels=[0, 1])
    plot_confusion_matrix(cm, classes=[0, 1])
コード例 #8
0
def load_config(**kwargs):
    print('loading csv file ...')
    global config

    df = pd.read_csv(Config.getPath('data') + '/' + TRAINING_DATA)
    df = df.sample(50000)
    X = df['question_text']
    Y = df['target']

    print('preparing configuration...')

    config = ClassifierFactory.getConfig(X, Y, json_file=None, **kwargs)

    #Two classes - Fake=0, Reliable=1
    config.set('num_target_tokens', 2)
コード例 #9
0
ファイル: factory.py プロジェクト: AndyTheFactory/SSL
    def getConfig(X=None,Y=None,json_file=None,joblib_file=None,**kwargs):
        """

        :param X: Text Data to be classified
        :param Y: True labels for training
        :param json_file: File to load Config
        :param kwargs:
            rest of config params:
                 max_input_seq_length
                 max_vocab_size
                 num_target_tokens
                 embedding
                 embedding_size
        :return:
        """
        if (ClassifierFactory.__config==None and joblib_file==None and json_file==None):
                ClassifierFactory.__config=Config(Txt_data=X,Txt_labels=Y,**kwargs)
        else:
            if (joblib_file!=None):
                ClassifierFactory.__config = Config.from_joblib(joblib_file)
            else:
                ClassifierFactory.__config=Config.from_json(json_file)

        return ClassifierFactory.__config
コード例 #10
0
def train_vanilla(classifier):
    global config
    print('configuration extracted from input texts ...')

    Xtrain, Xtest, Ytrain, Ytest = train_test_split(config.getData(),
                                                    config.getLabels(),
                                                    test_size=0.2,
                                                    random_state=42)

    print('training size: ', len(Xtrain))
    print('testing size: ', len(Xtest))

    print('start fitting ...')
    history = classifier.fit(Xtrain,
                             Ytrain,
                             Xtest,
                             Ytest,
                             epochs=config.get('epochs'))
    if (history != None):
        history_plot_file_path = Config.getPath(
            'reports') + '/' + classifier.model_name + '-history.png'
        plot_and_save_history(history, classifier.model_name,
                              history_plot_file_path)
コード例 #11
0
import logging
import logging.handlers
from time import gmtime, strftime
from config_class import Config
config = Config()

log_path = config.system['log_path']


class FileLogger:
    """
    Logger class for logging to file with rotation
    """
    LOG_FILENAME = log_path
    logger = logging.getLogger(__name__)

    def __init__(self, log_to_console=False):
        self.log_to_console = log_to_console
        self.log_format = '%(asctime)s [%(threadName)-12.12s] %(levelname)s - %(message)s'
        logger = logging.getLogger(__name__)
        logger.setLevel(logging.INFO)

        # create a file handler
        handler = logging.handlers.RotatingFileHandler(self.LOG_FILENAME,
                                                       maxBytes=1000000,
                                                       backupCount=10)
        handler.setLevel(logging.INFO)
        # create a logging format
        formatter = logging.Formatter(self.log_format)
        handler.setFormatter(formatter)
コード例 #12
0
from __future__ import absolute_import  # updated importing tools for python v3.x.x
import sys
from azqa_instrument import Tool  # import the Tool helper class
from tkinter import messagebox
from tkinter import ttk
from tkinter import PhotoImage
import tkinter
from read_log import Log
import os
from write_temp import Temp
from config_class import Config
from PIL import ImageTk, Image
from date_check import Date
import datetime

config_file = Config()
# TODO: Add filepath for spreadsheet
spread_path = config_file.masterlist


def main():

    tool_input = input(
        'Input tool ID')  #REMOVED & REPLACED FOR COMMAND LINE ARGUMENTS

    #tool_input = sys.argv[1]    # Grab the command line argument (tool ID) and assign it as tool_input

    # DONE remove below

    # DONE remove below
    #webbrowser.open_new(spread_path)
コード例 #13
0
        r"D:\Data Science\Projects\twitter-airline-sentiment\training_files\training_data\validation_data\validation_indices.pickle"
    )
    val_labels = load_obj(
        r"D:\Data Science\Projects\twitter-airline-sentiment\training_files\training_data\validation_data\validation_labels.pickle"
    )

    test_indices = load_obj(
        r"D:\Data Science\Projects\twitter-airline-sentiment\training_files\training_data\test_data\test_indices.pickle"
    )
    test_labels = load_obj(
        r"D:\Data Science\Projects\twitter-airline-sentiment\training_files\training_data\test_data\test_labels.pickle"
    )

    #=====The following line specifies the fixed parameters of the model=====

    config = Config(200, 3, 1694, 659, 732, 500, 1e-4, 35, 1, embedding_matrix)
    #n_features, n_classes, batch, val_batch, test_batch, n_epochs, lr, max_l, n_layers, embeddings

    #Uae hyperopt to find the best hyperparameters
    hyp_dir = r"D:\Data Science\Projects\twitter-airline-sentiment\training_files\training_logs\hyperopt\bd_1l_hyp_trials.pickle"
    #best, trials = hyperopt_wrapper_nn(train_indices, train_labels, val_indices, val_labels, config, hyp_dir, True)
    '''
    Use random search to find the best hyperparameters
    random_search_log = r"D:\Data Science\Projects\twitter-airline-sentiment\training_files\training_logs\random_search\two_layer_random_search_log.csv"
    randomized_search(train_indices, train_labels, val_indices, val_labels, config,  random_search_log)
    '''

    #=====Evaluating model performance on test set=====
    '''
    vals': {'n_dropout_1': [0.12294832533717485],
   'n_hidden_units_1': [495.0],
コード例 #14
0
# Use this to easily run the code in different directories/devices
folder['initial'] = 'C:/Users/jimar/Dimitris/python/'
# The path where the repository is stored
folder['main'] = folder['initial'] + 'crack_detection_CNN_masonry/'

# if folder['main'] == '', then the current working directory will be used
if folder['main'] == '':
    folder['main'] = os.getcwd()

import sys

sys.path.append(folder["main"])

from config_class import Config

cnf = Config(folder["main"])
args = cnf.set_repository()

# Set some parameters
IMAGE_DIMS = cnf.IMAGE_DIMS

# import the necessary packages
from sklearn.model_selection import train_test_split
from skimage.transform import resize
from imutils import paths
import numpy as np
import progressbar
import cv2

from subroutines.HDF5 import HDF5DatasetWriterMask
コード例 #15
0
def train_experiment(classifier):
    print('loading csv file ...')
    global config

    df = pd.read_csv(Config.getPath('data') + '/' + TRAINING_DATA)

    df = df.sample(20000)

    X = df['question_text']
    Y = df['target']

    print('splitting data...')

    Xtrain, Xtest, Ytrain, Ytest = train_test_split(X,
                                                    Y,
                                                    test_size=0.2,
                                                    random_state=42)

    print('training size: ', len(Xtrain))
    print('testing size: ', len(Xtest))

    print('start fitting ...')

    # max_sequence, vocab_size,  lstm_units, dropout
    experiment = [
        [20, 5000, 64, 0.2],  #0
        [35, 5000, 64, 0.2],  #1
        [50, 5000, 64, 0.2],  #2
        [100, 5000, 64, 0.2],  #3
        [50, 5000, 128, 0.2],  # 4
        [50, 5000, 256, 0.2],  # 5
        [50, 5000, 512, 0.2],  # 6
        [50, 2000, 64, 0.2],  # 7
        [50, 3000, 64, 0.2],  # 8
        [50, 4000, 64, 0.2],  # 9
        [50, 5000, 64, 0.2],  # 10
        [50, 6000, 64, 0.2],  # 11
        [50, 7000, 64, 0.2],  # 12
        [50, 8000, 64, 0.2],  # 13
        [50, 9000, 64, 0.2],  # 14
        [50, 5000, 64, 0.1],  # 15
        [50, 5000, 64, 0.2],  # 16
        [50, 5000, 64, 0.3],  # 17
        [50, 5000, 64, 0.4],  # 18
    ]
    i = 0
    for max_seq, vocab_siz, lstm_u, drop in experiment:

        config = Config(X, Y, max_seq, vocab_siz, 2, 'glove')

        print("%s starting experiment ... %d" % (datetime.datetime.now(), i))
        #model=ClassifierFactory.getLSTM(**{'config':config,'lstm_units':lstm_u,'dropout':drop})
        model = ClassifierFactory.getLSTM(**{
            'config': config,
            'lstm_units': lstm_u,
            'dropout': drop
        })

        history = model.fit(Xtrain,
                            Ytrain,
                            Xtest,
                            Ytest,
                            epochs=10,
                            file_prefix='experiment-%i' % i)

        history_plot_file_path = Config.getPath(
            'reports') + '/' + model.model_name + ('_experiment_%d' %
                                                   i) + '-history.png'
        plot_and_save_history(history, model.model_name,
                              history_plot_file_path)
        i += 1
コード例 #16
0
# Use this to easily run the code in different directories/devices
folder['initial'] = 'C:/Users/jimar/Dimitris/python/'
# The path where the repository is stored
folder['main'] = folder['initial'] + 'crack_detection_CNN_masonry/'

# if folder['main'] == '', then the current working directory will be used
if folder['main'] == '':
    folder['main'] = os.getcwd()

import sys

sys.path.append(folder['main'])

from config_class import Config

cnf = Config(folder['main'])
args = cnf.set_repository()

# Set some parameters
IMAGE_DIMS = cnf.IMAGE_DIMS
BS = cnf.BS
epochs = cnf.epochs
INIT_LR = cnf.INIT_LR
N_FILTERS = cnf.N_FILTERS
info = cnf.info
mode = cnf.mode

# When using DeepCrack, eager execution needs to be enabled
if args["model"] == 'DeepCrack':
    import tensorflow as tf
    tf.enable_eager_execution()