def __init__(self): self.conf = ParseConfig() self.data_set_loc = os.path.join(os.path.abspath(os.path.dirname(__file__)), self.conf.config_section_mapper("filePath").get("data_set_loc")) self.data_extractor = DataExtractor(self.data_set_loc) self.mlratings = self.data_extractor.get_mlratings_data() self.mlmovies = self.data_extractor.get_mlmovies_data() self.imdb_actor_info = self.data_extractor.get_imdb_actor_info_data() self.genome_tags = self.data_extractor.get_genome_tags_data()
def __init__(self): self.conf = ParseConfig() self.data_set_loc = self.conf.config_section_mapper("filePath").get( "data_set_loc") self.data_extractor = DataExtractor(self.data_set_loc) self.mlmovies = self.data_extractor.get_mlmovies_data() self.genre_tag = GenreTag() self.genre_data = self.genre_tag.get_genre_data()
def __init__(self): self.conf = ParseConfig() self.data_set_loc = self.conf.config_section_mapper("filePath").get("data_set_loc") self.data_extractor = DataExtractor(self.data_set_loc) self.ordered_years = [] self.ordered_movie_names = [] self.ordered_actor_names = [] self.print_list = ["\n\nFor Years:", "\n\nFor Movies:", "\n\nFor Actors:"] self.util = Util() self.tensor = self.fetchActorMovieYearTensor() self.factors = self.util.CPDecomposition(self.tensor, 5)
def __init__(self): self.conf = ParseConfig() self.data_set_loc = self.conf.config_section_mapper("filePath").get( "data_set_loc") self.data_extractor = DataExtractor(self.data_set_loc) self.max_ratings = 5 self.ordered_ratings = [0, 1, 2, 3, 4, 5] self.ordered_movie_names = [] self.ordered_tag_names = [] self.print_list = [ "\n\nFor Tags:", "\n\nFor Movies:", "\n\nFor Ratings:" ] self.util = Util() self.tensor = self.fetchTagMovieRatingTensor() self.factors = self.util.CPDecomposition(self.tensor, 5)
class CoactorCoactorMatrix(object): """ Class to compute the Coactor Matrix which represents the number of movies each pair of actors have acted in, together """ def __init__(self): self.conf = ParseConfig() self.data_set_loc = os.path.join( os.path.abspath(os.path.dirname(__file__)), self.conf.config_section_mapper("filePath").get("data_set_loc")) self.data_extractor = DataExtractor(self.data_set_loc) def fetchCoactorCoactorSimilarityMatrix(self): """ Creates the coactor matrix with all the actors in a given set :return: coactor matrix """ movie_actor_df = self.data_extractor.get_movie_actor_data() movie_actor_set_df = movie_actor_df.groupby( ['actorid'])["movieid"].apply(set).reset_index() num_of_actors = len(movie_actor_df.actorid.unique()) coactor_matrix = [[0] * num_of_actors for i in range(num_of_actors)] for index, movie_set in zip(movie_actor_set_df.index, movie_actor_set_df.movieid): for index_2, movie_set_2 in zip(movie_actor_set_df.index, movie_actor_set_df.movieid): if index != index_2: coactor_matrix[index][index_2] = len( movie_set.intersection(movie_set_2)) numpy.savetxt("coactor_coactor_matrix.csv", coactor_matrix, delimiter=",") return coactor_matrix, movie_actor_set_df.actorid.unique()
class Util(object): """ Class containing all the common utilities used across the entire code base """ def __init__(self): self.conf = ParseConfig() self.data_set_loc = os.path.join(os.path.abspath(os.path.dirname(__file__)), self.conf.config_section_mapper("filePath").get("data_set_loc")) self.data_extractor = DataExtractor(self.data_set_loc) self.mlratings = self.data_extractor.get_mlratings_data() self.mlmovies = self.data_extractor.get_mlmovies_data() self.imdb_actor_info = self.data_extractor.get_imdb_actor_info_data() self.genome_tags = self.data_extractor.get_genome_tags_data() def get_sorted_actor_ids(self): """ Obtain sorted actor ids :return: list of sorted actor ids """ actor_info = self.data_extractor.get_imdb_actor_info_data() actorids = actor_info.id actorids = actorids.sort_values() return actorids def get_movie_id(self, movie): """ Obtain name ID for the name passed as input :param movie: :return: movie id """ all_movie_data = self.mlmovies movie_data = all_movie_data[all_movie_data['moviename'] == movie] movie_id = movie_data['movieid'].unique() return movie_id[0] def get_average_ratings_for_movie(self, movie_id): """ Obtain average rating for movie :param movie_id: :return: average movie rating """ all_ratings = self.mlratings movie_ratings = all_ratings[all_ratings['movieid'] == movie_id] ratings_sum = 0 ratings_count = 0 for index, row in movie_ratings.iterrows(): ratings_count += 1 ratings_sum += row['rating'] return ratings_sum / float(ratings_count) def get_actor_name_for_id(self, actor_id): """ actor name for id :param actor_id: :return: actor name for the actor id """ actor_data = self.imdb_actor_info[self.imdb_actor_info['id'] == actor_id] name = actor_data['name'].unique() return name[0] def get_movie_name_for_id(self, movieid): """ movie name for movie id :param movieid: :return: movie name """ all_movie_data = self.mlmovies movie_data = all_movie_data[all_movie_data['movieid'] == movieid] movie_name = movie_data['moviename'].unique() return movie_name[0] def get_tag_name_for_id(self, tag_id): """ tag name for tag id :param tag_id: :return: tag name """ tag_data = self.genome_tags[self.genome_tags['tagId'] == tag_id] name = tag_data['tag'].unique() return name[0] def partition_factor_matrix(self, matrix, no_of_partitions, entity_names): """ Function to partition the factor matrix into groups as per 2-norm distance :param matrix: :param no_of_partitions: :param entity_names: :return: dictionary containing the groups """ entity_dict = {} for i in range(0, len(matrix)): length = 0 for latent_semantic in matrix[i]: length += abs(latent_semantic) ** 2 entity_dict[entity_names[i]] = math.sqrt(length) max_length = float(max(entity_dict.values())) min_length = float(min(entity_dict.values())) length_of_group = (float(max_length) - float(min_length)) / float(no_of_partitions) groups = {} for i in range(0, no_of_partitions): groups["Group " + str(i + 1) + " ( " + str(min_length + float(i * length_of_group)) + " , " + str( min_length + float((i + 1) * length_of_group)) + " )"] = [] for key in entity_dict.keys(): entity_length = entity_dict[key] group_no = math.ceil(float(entity_length - min_length) / float(length_of_group)) if group_no == 0: group_no = 1 groups["Group " + str(group_no) + " ( " + str( min_length + float((group_no - 1) * length_of_group)) + " , " + str( min_length + float(group_no * length_of_group)) + " )"].append(key) return groups def get_latent_semantics(self, r, matrix): """ Function to obtain the latent semantics for the factor matrix :param r: :param matrix: :return: top 'r' latent semantics """ latent_semantics = [] for latent_semantic in matrix: if len(latent_semantics) == r: break latent_semantics.append(latent_semantic) return latent_semantics def print_partitioned_entities(self, groupings): """ Pretty print groupings :param groupings: """ for key in groupings.keys(): print(key) if len(groupings[key]) == 0: print("NO ELEMENTS IN THIS GROUP\n") continue for entity in groupings[key]: print(entity, end="|") print("\n") def print_latent_semantics(self, latent_semantics, entity_names_list): """ Pretty print latent semantics :param latent_semantics: :param entity_names_list: """ for latent_semantic in latent_semantics: print("Latent Semantic:") dict1 = {} for i in range(0, len(entity_names_list)): dict1[entity_names_list[i]] = float(latent_semantic[i]) for s in sorted(dict1, key=dict1.get, reverse=True): # value-based sorting print(str(s) + "*(" + str(dict1[s]) + ")", end="") print(" + ", end="") print("\n") def CPDecomposition(self, tensor, rank): """ Perform CP Decomposition :param tensor: :param rank: :return: factor matrices obtained after decomposition """ factors = decomp.parafac(tensor, rank) return factors def SVD(self, matrix): """ Perform SVD :param matrix: :return: factor matrices and the core matrix """ U, s, Vh = linalg.svd(matrix, full_matrices=False) return (U, s, Vh) def PCA(self, matrix): """ Perform PCA :param matrix: :return: factor matrices and the core matrix """ # Computng covariance matrix cov_df = numpy.cov(matrix, rowvar=False) # Calculating PCA U, s, Vh = linalg.svd(cov_df) return (U, s, Vh) def LDA(self, input_compound_list, num_topics, num_features): """ Perform LDA :param input_compound_list: :param num_topics: :param num_features: :return: topics and object topic distribution """ # turn our tokenized documents into a id <-> term dictionary dictionary = corpora.Dictionary(input_compound_list) # convert tokenized documents into a document-term matrix corpus = [dictionary.doc2bow(text) for text in input_compound_list] # generate LDA model lda = gensim.models.ldamodel.LdaModel(corpus, num_topics, id2word=dictionary, passes=20) latent_semantics = lda.print_topics(num_topics, num_features) # for latent in latent_semantics: # print(latent) corpus = lda[corpus] # for i in corpus: # print(i) return corpus, latent_semantics def get_doc_topic_matrix(self, u, num_docs, num_topics): """ Reconstructing data :param u: :param num_docs: :param num_topics: :return: reconstructed data """ u_matrix = numpy.zeros(shape=(num_docs, num_topics)) for i in range(0, len(u)): doc = u[i] for j in range(0, len(doc)): (topic_no, prob) = doc[j] u_matrix[i, topic_no] = prob return u_matrix
import argparse import logging import operator from util import Util import numpy import pandas as pd from actor_actor_similarity_matrix import ActorActorMatrix from coactor_coactor_matrix import CoactorCoactorMatrix from config_parser import ParseConfig from data_extractor import DataExtractor logging.basicConfig(level=logging.INFO) log = logging.getLogger(__name__) log.disabled = True conf = ParseConfig() class PageRankActor(ActorActorMatrix): """Class to calculate Personalised PageRank""" def __init__(self): super().__init__() self.data_set_loc = conf.config_section_mapper("filePath").get( "data_set_loc") self.data_extractor = DataExtractor(self.data_set_loc) self.actor_matrix, self.actorids = self.fetchActorActorSimilarityMatrix( ) self.coactor_obj = CoactorCoactorMatrix() self.coactor_matrix, self.coactorids = self.coactor_obj.fetchCoactorCoactorSimilarityMatrix( ) self.util = Util()
class TagMovieRatingTensor(object): def __init__(self): self.conf = ParseConfig() self.data_set_loc = self.conf.config_section_mapper("filePath").get( "data_set_loc") self.data_extractor = DataExtractor(self.data_set_loc) self.max_ratings = 5 self.ordered_ratings = [0, 1, 2, 3, 4, 5] self.ordered_movie_names = [] self.ordered_tag_names = [] self.print_list = [ "\n\nFor Tags:", "\n\nFor Movies:", "\n\nFor Ratings:" ] self.util = Util() self.tensor = self.fetchTagMovieRatingTensor() self.factors = self.util.CPDecomposition(self.tensor, 5) def fetchTagMovieRatingTensor(self): """ Create tag movie rating tensor :return: tensor """ mltags_df = self.data_extractor.get_mltags_data() tag_id_list = mltags_df["tagid"] tag_id_count = 0 tag_id_dict = {} for element in tag_id_list: if element in tag_id_dict.keys(): continue tag_id_dict[element] = tag_id_count tag_id_count += 1 name = self.util.get_tag_name_for_id(element) self.ordered_tag_names.append(name) movieid_list = mltags_df["movieid"] movieid_count = 0 movieid_dict = {} for element in movieid_list: if element in movieid_dict.keys(): continue movieid_dict[element] = movieid_count movieid_count += 1 name = self.util.get_movie_name_for_id(element) self.ordered_movie_names.append(name) tensor = np.zeros((tag_id_count, movieid_count, self.max_ratings + 1)) for index, row in mltags_df.iterrows(): tagid = row["tagid"] movieid = row["movieid"] avg_movie_rating = self.util.get_average_ratings_for_movie(movieid) for rating in range(0, int(avg_movie_rating) + 1): tagid_id = tag_id_dict[tagid] movieid_id = movieid_dict[movieid] tensor[tagid_id][movieid_id][rating] = 1 return tensor def print_latent_semantics(self, r): """ Pretty print latent semantics :param r: """ i = 0 for factor in self.factors: print(self.print_list[i]) latent_semantics = self.util.get_latent_semantics( r, factor.transpose()) self.util.print_latent_semantics(latent_semantics, self.get_factor_names(i)) i += 1 def get_factor_names(self, i): """ Obtain factor names :param i: :return: factor names """ if i == 0: return self.ordered_tag_names elif i == 1: return self.ordered_movie_names elif i == 2: return self.ordered_ratings def get_partitions(self, no_of_partitions): """ Partition factor matrices :param no_of_partitions: :return: list of groupings """ i = 0 groupings_list = [] for factor in self.factors: groupings = self.util.partition_factor_matrix( factor, no_of_partitions, self.get_factor_names(i)) groupings_list.append(groupings) i += 1 return groupings_list def print_partitioned_entities(self, no_of_partitions): """ Pretty print groupings :param no_of_partitions: """ groupings_list = self.get_partitions(no_of_partitions) i = 0 for groupings in groupings_list: print(self.print_list[i]) self.util.print_partitioned_entities(groupings) i += 1
return self.data_extractor("task2-feedback.csv") def get_task4_feedback_data(self): return self.data_extractor("task4-feedback.csv") def get_movie_latent_semantics_data(self): return self.data_extractor("movie_latent_semantic.csv") def get_json(self): file_loc = os.path.join(self.file_path, "label_movies.json") json_movie_label_dict = json.load(open(file_loc)) return json_movie_label_dict def get_relevance_feedback_query_vector(self): return self.data_extractor("relevance-feedback-query-vector.csv") def get_lsh_details(self): return json.load( open(os.path.join(self.file_path, 'task_3_details.json'))) if __name__ == "__main__": conf = ParseConfig() data_set_location = conf.config_section_mapper("filePath").get( "data_set_loc") extract_data = DataExtractor(data_set_location) data_frame = extract_data.data_extractor("mlmovies.csv") print("File columns for mlmovies.csv") print("Columns = %s" % (data_frame.columns.values))
class ActorMovieYearTensor(object): def __init__(self): self.conf = ParseConfig() self.data_set_loc = self.conf.config_section_mapper("filePath").get("data_set_loc") self.data_extractor = DataExtractor(self.data_set_loc) self.ordered_years = [] self.ordered_movie_names = [] self.ordered_actor_names = [] self.print_list = ["\n\nFor Years:", "\n\nFor Movies:", "\n\nFor Actors:"] self.util = Util() self.tensor = self.fetchActorMovieYearTensor() self.factors = self.util.CPDecomposition(self.tensor, 5) def fetchActorMovieYearTensor(self): """ Create actor movie year tensor :return: tensor """ movies_df = self.data_extractor.get_mlmovies_data() actor_df = self.data_extractor.get_movie_actor_data() movie_actor_df = actor_df.merge(movies_df, how="left", on="movieid") year_list = movie_actor_df["year"] year_count = 0 year_dict = {} for element in year_list: if element in year_dict.keys(): continue year_dict[element] = year_count year_count += 1 self.ordered_years.append(element) movieid_list = movie_actor_df["movieid"] movieid_count = 0 movieid_dict = {} for element in movieid_list: if element in movieid_dict.keys(): continue movieid_dict[element] = movieid_count movieid_count += 1 name = self.util.get_movie_name_for_id(element) self.ordered_movie_names.append(name) actorid_list = movie_actor_df["actorid"] actorid_count = 0 actorid_dict = {} for element in actorid_list: if element in actorid_dict.keys(): continue actorid_dict[element] = actorid_count actorid_count += 1 name = self.util.get_actor_name_for_id(element) self.ordered_actor_names.append(name) tensor = np.zeros((year_count, movieid_count, actorid_count)) for index, row in movie_actor_df.iterrows(): year = row["year"] movieid = row["movieid"] actorid = row["actorid"] year_id = year_dict[year] movieid_id = movieid_dict[movieid] actorid_id = actorid_dict[actorid] tensor[year_id][movieid_id][actorid_id] = 1 return tensor def print_latent_semantics(self, r): """ Pretty print latent semantics :param r: """ i = 0 for factor in self.factors: print(self.print_list[i]) latent_semantics = self.util.get_latent_semantics(r, factor.transpose()) self.util.print_latent_semantics(latent_semantics, self.get_factor_names(i)) i += 1 def get_factor_names(self, i): """ Obtain factor names :param i: :return: factor names """ if i == 0: return self.ordered_years elif i == 1: return self.ordered_movie_names elif i == 2: return self.ordered_actor_names def get_partitions(self, no_of_partitions): """ Partition factor matrices :param no_of_partitions: :return: list of groupings """ i = 0 groupings_list = [] for factor in self.factors: groupings = self.util.partition_factor_matrix(factor, no_of_partitions, self.get_factor_names(i)) groupings_list.append(groupings) i += 1 return groupings_list def print_partitioned_entities(self, no_of_partitions): """ Pretty print groupings :param no_of_partitions: """ groupings_list = self.get_partitions(no_of_partitions) i = 0 for groupings in groupings_list: print(self.print_list[i]) self.util.print_partitioned_entities(groupings) i += 1
class Util(object): """ Class containing all the common utilities used across the entire code base """ def __init__(self): self.conf = ParseConfig() self.data_set_loc = self.conf.config_section_mapper("filePath").get( "data_set_loc") self.data_extractor = DataExtractor(self.data_set_loc) self.mlmovies = self.data_extractor.get_mlmovies_data() self.genre_tag = GenreTag() self.genre_data = self.genre_tag.get_genre_data() def get_movie_id(self, movie): """ Obtain name ID for the name passed as input :param movie: :return: movie id """ all_movie_data = self.mlmovies movie_data = all_movie_data[all_movie_data['moviename'] == movie] movie_id = movie_data['movieid'].unique() return movie_id[0] def CPDecomposition(self, tensor, rank): """ Perform CP Decomposition :param tensor: :param rank: :return: factor matrices obtained after decomposition """ (movie_count, genre_count, tag_count) = tensor.shape rank = min(rank, movie_count - 1, genre_count - 1, tag_count - 1) factors = decomp.parafac(tensor, rank) return factors def SVD(self, matrix): """ Perform SVD :param matrix: :return: factor matrices and the core matrix """ U, s, Vh = numpy.linalg.svd(matrix, full_matrices=False) return U, s, Vh def PCA(self, matrix): """ Perform PCA :param matrix: :return: factor matrices and the core matrix """ cov_df = numpy.cov(matrix, rowvar=False) U, s, Vh = numpy.linalg.svd(cov_df) return U, s, Vh def LDA(self, input_compound_list, num_topics, num_features): """ Perform LDA :param input_compound_list: :param num_topics: :param num_features: :return: topics and object topic distribution """ dictionary = gensim.corpora.Dictionary(input_compound_list) corpus = [dictionary.doc2bow(text) for text in input_compound_list] lda = gensim.models.ldamodel.LdaModel(corpus, num_topics, id2word=dictionary, passes=20) latent_semantics = lda.print_topics(num_topics, num_features) corpus = lda[corpus] return corpus, latent_semantics def get_doc_topic_matrix(self, u, num_docs, num_topics): """ Reconstructing data :param u: :param num_docs: :param num_topics: :return: reconstructed data """ u_matrix = numpy.zeros(shape=(num_docs, num_topics)) for i in range(0, len(u)): doc = u[i] for j in range(0, len(doc)): (topic_no, prob) = doc[j] u_matrix[i, topic_no] = prob return u_matrix def get_transition_dataframe(self, data_frame): """ Function to get the transition matrix for Random walk :param data_frame: :return: transition matrix """ for column in data_frame: data_frame[column] = pd.Series([ 0 if ind == int(column) else each for ind, each in zip(data_frame.index, data_frame[column]) ], index=data_frame.index) data_frame["row_sum"] = data_frame.sum(axis=1) for column in data_frame: data_frame[column] = pd.Series([ each / sum if (column != "row_sum" and each > 0 and ind != int(column) and sum != 0) else each for ind, each, sum in zip( data_frame.index, data_frame[column], data_frame.row_sum) ], index=data_frame.index) data_frame = data_frame.drop(["row_sum"], axis=1) data_frame.loc[(data_frame.T == 0).all()] = float( 1 / (len(data_frame.columns))) data_frame = data_frame.transpose() return data_frame def get_seed_matrix(self, transition_df, seed_nodes, nodes): """ Function to get the Restart matrix for entries in the seed list :param transition_df: :param seed_nodes: :param nodeids: :return: seed_matrix """ seed_matrix = [0.0 for each in range(len(transition_df.columns))] seed_value_list = self.distribute(seed_nodes, num_of_seeds_to_recommend=1) for each in seed_nodes: seed_matrix[list(nodes).index(each)] = seed_value_list[list( seed_nodes).index(each)] return seed_matrix def compute_pagerank(self, seed_nodes, node_matrix, nodes): """ Function to compute the Personalised Pagerank for the given input :param seed_actors: :param actor_matrix: :param actorids: :return: """ data_frame = pd.DataFrame(node_matrix) transition_df = self.get_transition_dataframe(data_frame) seed_matrix = self.get_seed_matrix(transition_df, seed_nodes, nodes) result_list = seed_matrix temp_list = [] num_of_iter = 0 while temp_list != result_list and num_of_iter <= 1000: num_of_iter += 1 temp_list = result_list result_list = list(0.85 * numpy.matmul( numpy.array(transition_df.values), numpy.array(result_list)) + 0.15 * numpy.array(seed_matrix)) page_rank_dict = {i: j for i, j in zip(nodes, result_list)} sorted_rank = sorted(page_rank_dict.items(), key=operator.itemgetter(1), reverse=True) return sorted_rank[0:len(seed_nodes) + 5] def print_movie_recommendations_and_collect_feedback( self, movie_ids, task_no, user_id): """ Interface to obtain relevance feedback :param movie_ids: List of movies :param task_no: Task from which the interface is called :param user_id: user for which the movies are displayed """ if len(movie_ids) == 0: print("No movies found.") exit(1) if task_no in [1, 2]: print("Movie recommendations: ") elif task_no in [3, 4]: print("Nearest movies: ") else: print("Incorrect task number - " + task_no + "\nAborting...") exit(1) count = 1 movie_dict = {} for movie_id in movie_ids: movie_name = self.get_movie_name_for_id(movie_id) print(str(count) + ". " + str(movie_name) + " - " + str(movie_id)) movie_dict[count] = (movie_name, movie_id) count += 1 done = False rel_movies = [] irrel_movies = [] while not done: movies_list = input( "\nPlease enter comma separated ids of the relevant movies: ") rel_ids = set( movies_list.strip(" ").strip(",").replace(" ", "").split(",")) while '' in rel_ids: rel_ids.remove('') incorrect = False for item in rel_ids: if int(item) not in [ num for num in range(1, len(movie_ids) + 1) ]: print("Incorrect movie ID selected.") incorrect = True break if incorrect: continue confirmation = input( "Are you sure these are the relevant movies? " + str(list(rel_ids)) + " (y/Y/n/N): ") if confirmation != "y" and confirmation != "Y": continue movies_list = input( "\nPlease enter comma separated ids of the irrelevant movies: " ) irrel_ids = set( movies_list.strip(" ").strip(",").replace(" ", "").split(",")) while '' in irrel_ids: irrel_ids.remove('') incorrect = False for item in irrel_ids: if int(item) not in list( set(list([num for num in range(1, len(movie_ids) + 1)])) - set(int(num) for num in rel_ids)): print("Incorrect movie ID selected.") incorrect = True break if incorrect: continue confirmation = input( "Are you sure these are the irrelevant movies? " + str(list(irrel_ids)) + " (y/Y/n/N): ") if confirmation != "y" and confirmation != "Y": continue done = True for item in rel_ids: rel_movies.append(movie_dict[int(item)]) for item in irrel_ids: irrel_movies.append(movie_dict[int(item)]) if task_no == 1 or task_no == 2: if not os.path.isfile(self.data_set_loc + "/task2-feedback.csv"): df = pd.DataFrame( columns=['movie-name', 'movie-id', 'relevancy', 'user-id']) else: df = self.data_extractor.get_task2_feedback_data() for movie in rel_movies: df = df.append( { 'movie-name': movie[0], 'movie-id': movie[1], 'relevancy': 'relevant', 'user-id': user_id }, ignore_index=True) for movie in irrel_movies: df = df.append( { 'movie-name': movie[0], 'movie-id': movie[1], 'relevancy': 'irrelevant', 'user-id': user_id }, ignore_index=True) df.to_csv(self.data_set_loc + "/task2-feedback.csv", index=False) elif task_no == 3 or task_no == 4: if not os.path.isfile(self.data_set_loc + "/task4-feedback.csv"): df = pd.DataFrame( columns=['movie-name', 'movie-id', 'relevancy']) else: df = self.data_extractor.get_task4_feedback_data() for movie in rel_movies: df = df.append( { 'movie-name': movie[0], 'movie-id': movie[1], 'relevancy': 'relevant' }, ignore_index=True) for movie in irrel_movies: df = df.append( { 'movie-name': movie[0], 'movie-id': movie[1], 'relevancy': 'irrelevant' }, ignore_index=True) df.to_csv(self.data_set_loc + "/task4-feedback.csv", index=False) def get_distribution_count(self, seed_nodes, num_of_seeds_to_recommend): """ Given the number of seeds to be recommended and the seed_nodes, returns the distribution for each seed_node considering order :param seed_nodes: :param num_of_seeds_to_recommend: :return: distribution_list """ seed_value_list = self.distribute(seed_nodes, num_of_seeds_to_recommend) seed_value_list = [round(each) for each in seed_value_list] total_count = sum(seed_value_list) difference = num_of_seeds_to_recommend - total_count if difference > 0: for i in range(0, len(seed_value_list)): if seed_value_list[i] == 0: seed_value_list[i] = 1 difference -= 1 if difference == 0: return seed_value_list for i in range(0, len(seed_value_list)): seed_value_list[i] += 1 difference -= 1 if difference == 0: return seed_value_list elif difference < 0: for i in range(0, len(seed_value_list)): if seed_value_list[len(seed_value_list) - 1 - i] != 0: seed_value_list[len(seed_value_list) - 1 - i] -= 1 difference += 1 if difference == 0: return seed_value_list return seed_value_list def get_movie_tag_matrix(self): """ Function to get movie_tag matrix containing list of tags in each movie :return: movie_tag_matrix """ tag_df = self.genre_data unique_tags = tag_df.tag_string.unique() idf_data = tag_df.groupby(['movieid'])['tag_string'].apply(set) tf_df = tag_df.groupby(['movieid' ])['tag_string'].apply(list).reset_index() movie_tag_dict = dict(zip(tf_df.movieid, tf_df.tag_string)) tf_weight_dict = { movie: self.genre_tag.assign_tf_weight(tags) for movie, tags in list(movie_tag_dict.items()) } idf_weight_dict = self.genre_tag.assign_idf_weight( idf_data, unique_tags) tag_df = self.genre_tag.get_model_weight(tf_weight_dict, idf_weight_dict, tag_df, 'tfidf') tag_df["total"] = tag_df.groupby(['movieid', 'tag_string' ])['value'].transform('sum') temp_df = tag_df[["movieid", "tag_string", "total"]].drop_duplicates().reset_index() genre_tag_tfidf_df = temp_df.pivot_table('total', 'movieid', 'tag_string') genre_tag_tfidf_df = genre_tag_tfidf_df.fillna(0) return genre_tag_tfidf_df def distribute(self, seed_nodes, num_of_seeds_to_recommend): """ Distributes importance among seed_nodes based on order of occurrence :param seed_nodes: :param num_of_seeds_to_recommend: :return: list of size num_of_seeds_to_recommend with distributed values """ seed_value = float(num_of_seeds_to_recommend) / len(seed_nodes) seed_value_list = [seed_value for seed in seed_nodes] delta = seed_value / len(seed_nodes) for i in range(0, len(seed_nodes) - 1): seed_value_list[i] = seed_value_list[i] + (len(seed_nodes) - 1 - i) * delta for j in range(i + 1, len(seed_nodes)): seed_value_list[j] = seed_value_list[j] - delta return seed_value_list def get_movie_name_for_id(self, movieid): """ movie name for movie id :param movieid: :return: movie name """ all_movie_data = self.mlmovies movie_data = all_movie_data[all_movie_data['movieid'] == movieid] movie_name = movie_data['moviename'].unique() return movie_name[0] def get_tag_list_for_movie(self, movie): """ Get a tag list for the movie :param movie: movie id :return: list of tags """ movie_specific_data = self.genre_data[self.genre_data["movieid"] == movie] tags_list = movie_specific_data["tag_string"].unique() return tags_list def get_movies_for_tag(self, tag): """ Get the list of movies containing the tag :param tag: tag string :return: list of movies """ tag_specific_data = self.genre_data[self.genre_data["tag_string"] == tag] movies_list = tag_specific_data["movieid"].unique() return movies_list def get_all_movies_for_user(self, user_id): """ Obtain all movies watched by the user :param user_id: :return: list of movies watched by the user """ user_data = self.genre_data[self.genre_data['userid'] == user_id] user_data = user_data.sort_values('timestamp', ascending=False) movies = user_data['movieid'].unique() return movies def get_movies_after_year(self, year): all_movie_data = self.mlmovies movie_data = all_movie_data[all_movie_data['year'] >= year] movie_id_list = movie_data['movieid'].unique() return movie_id_list def get_vector_magnitude(self, vector): """ Calculate the magnitude of the vector :param vector: :return: length of the vector """ result = 0 for i in vector: result += (i * i) return math.sqrt(result)
def __init__(self): self.conf = ParseConfig() self.data_set_loc = os.path.join( os.path.abspath(os.path.dirname(__file__)), self.conf.config_section_mapper("filePath").get("data_set_loc")) self.data_extractor = DataExtractor(self.data_set_loc)