コード例 #1
0
def plot_convolution(plotname, tsframe, tsframe_max, paperwidth):
    colormap=plt.get_cmap('YlOrRd_r')
    colormap.set_under([0.2, 0.2, 0.2])

    figure_width = paperwidth
    figure_height = paperwidth
    figure_size = [figure_width, figure_height]
    config.load_config_small()

    width = tsframe.shape[1]; height = tsframe.shape[0]
    xs,ys = np.meshgrid(np.arange(0, width+1), np.arange(0, height+1))
   
    fig, axes = plt.subplots(nrows=1, ncols=1, sharex=False, sharey=False, squeeze=True, figsize=figure_size, dpi=100)
    ax = axes
    # Workaround inverted y-axis
    ax.invert_yaxis()

    # pcolormesh aligns cells on their edges, while imshow aligns them on their centers.
    ax.pcolormesh(xs-0.5, ys-0.5, tsframe, cmap=colormap, vmin=0.1, vmax=tsframe_max,
                  shading="faceted", linestyle="dashed", linewidth=0.5, edgecolor=[0.0, 0.0, 0.0])

    # Absolute number
    #for i,j in ((x,y) for x in np.arange(0, len(tsframe))
    #    for y in np.arange(0, len(tsframe[0]))):
    #        if tsframe[i][j] >= 1:
    #            ax.annotate(str(int(tsframe[i][j])), xy=(j,i), fontsize=3.5, ha='center', va='center')

    ax.set_aspect('equal')
    ax.set_xlim([-0.5, width-0.5])
    ax.set_ylim([height-0.5, -0.5])

    ax.xaxis.tick_top()
    ax.tick_params(axis='both', which='both', left='off', right='off', bottom='off', top='off', labeltop='on',
                   pad=1, labelsize=4)
    #ax.xaxis.set_major_locator(plt.NullLocator())
    #ax.yaxis.set_major_locator(plt.NullLocator())

    fig.tight_layout()

    fig.savefig(plotname+".pdf", pad_inches=0, bbox_inches='tight', dpi=fig.dpi) # pdf
    fig.savefig(plotname+".pgf", pad_inches=0, bbox_inches='tight', dpi=fig.dpi) # pgf
コード例 #2
0
############
# Plotting
###########
text_width = 6.30045  # LaTeX text width in inches
golden_ratio = (1 + np.sqrt(5)) / 2.0

size_factor = 0.75
figure_width = size_factor * text_width
figure_height = (figure_width / golden_ratio)
#figure_height = (text_width / golden_ratio) # height is golden ratio to page width

#figure_height = 1.3 * figure_width
#figure_size = [figure_width, figure_height]
figure_size = [figure_width, figure_width]

config.load_config_small()

# Arbitrary colormap
import matplotlib.colors as colors
import matplotlib.cm as cmx

cdict = {
    'red': ((0.0, 0.9, 0.9), (1.0, 0.9, 0.9)),
    'green': ((0.0, 0.9, 0.9), (1.0, 0.0, 0.0)),
    'blue': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0))
}

#plt.register_cmap(name='YELLOW_RED', data=cdict)
#colorMap = plt.get_cmap("YELLOW_RED")

colorMap = plt.get_cmap("YlOrRd_r")
コード例 #3
0
ファイル: experiments.py プロジェクト: pxlong/tactile-sensors
                    fontsize='small', labelspacing=0.5, handletextpad=0.05, columnspacing=0.5, borderpad=0.5,
                    fancybox=True, shadow=False, framealpha=1.0)

plotname = "scatterplotmatrix_legend"
fig.savefig(plotname+".pdf", pad_inches=0, dpi=fig.dpi) # pdf
fig.savefig(plotname+".pgf", pad_inches=0, dpi=fig.dpi) # pgf
plt.close()
'''







'''
#######################################################
# Bean plot (standardized features)
#######################################################
import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt

config.load_config_small()
figure_size = [1*text_width, 1*text_height]


n_columns = 54
n_rows = 12 # 36
rows = np.array([[0, 12], [12, 24], [24, 36]])
#labels = np.arange(0, 54, 1)
コード例 #4
0
ファイル: chebyshev.py プロジェクト: pxlong/tactile-sensors
fig.savefig(plotname+".pgf", pad_inches=0, dpi=fig.dpi) # pgf

plt.close()




##################################
# 2D
##################################

figure_width = 0.66*text_width
figure_height = figure_width # (figure_width / golden_ratio) #figure_width
#figure_height = 0.75 * figure_width
figure_size = [figure_width, figure_height]
config.load_config_small()

# Custom colormap UIBK Orange
cdict = {'red': ((0.0, 1.0, 1.0),
                 (1.0, 1.0, 1.0)),

        'green': ((0.0, 1.0, 1.0),
                  (1.0, 0.5, 0.5)),

        'blue': ((0.0, 1.0, 1.0),
                 (1.0, 0.0, 0.0))}
                
plt.register_cmap(name='UIBK_ORANGES', data=cdict)

p = 5
x = np.linspace(-1, 1, 256)
コード例 #5
0
def plot_convolution3(plotname, tsframe, paperwidth):
    colormap = plt.get_cmap('YlOrRd_r')
    colormap.set_under([0.2, 0.2, 0.2])

    figure_width = paperwidth
    figure_height = paperwidth
    figure_size = [figure_width, figure_height]
    config.load_config_small()

    # find peak and scale neighbourhood
    poi = np.asarray(np.unravel_index(np.argmax(tsframe), tsframe.shape))
    px = poi[1]
    py = poi[0]

    r = 1
    scalefactor = 4.0
    peak_area = tsframe[py - r:py + r + 1, px - r:px + r + 1]
    peak_area = scipy.ndimage.zoom(peak_area, scalefactor, order=3)
    # Point of interest of peak_area
    poi_area = np.asarray(
        np.unravel_index(np.argmax(peak_area), peak_area.shape))
    px_area = poi_area[1]
    py_area = poi_area[0]

    offset_x_area = (scalefactor * (2 * r + 1) - 1) / 2.0 - px_area
    offset_y_area = (scalefactor * (2 * r + 1) - 1) / 2.0 - py_area

    width = peak_area.shape[1]
    height = peak_area.shape[0]
    xs, ys = np.meshgrid(np.arange(0, width + 1), np.arange(0, height + 1))

    fig, axes = plt.subplots(nrows=1,
                             ncols=1,
                             sharex=False,
                             sharey=False,
                             squeeze=True,
                             figsize=figure_size,
                             dpi=100)
    ax = axes
    # Workaround inverted y-axis
    ax.invert_yaxis()

    # pcolormesh aligns cells on their edges, while imshow aligns them on their centers.
    ax.pcolormesh(xs - 0.5,
                  ys - 0.5,
                  peak_area,
                  cmap=colormap,
                  vmin=0.1,
                  vmax=np.max(peak_area),
                  shading="faceted",
                  linestyle="dashed",
                  linewidth=0.5,
                  edgecolor=[0.0, 0.0, 0.0])

    # Absolute number
    #for i,j in ((x,y) for x in np.arange(0, len(tsframe))
    #    for y in np.arange(0, len(tsframe[0]))):
    #        if tsframe[i][j] >= 1:
    #            ax.annotate(str(int(tsframe[i][j])), xy=(j,i), fontsize=3.5, ha='center', va='center')

    r = 3.5
    #extent1 =  patches.Rectangle((-0.48, -0.48), 11.96, 11.96, lw=1.5, ec=[0.0, 0.0, 0.0, 1.0], fc=[1.0, 1.0, 1.0, 0.0], zorder=98 )
    #extent2 =  patches.Rectangle((-0.48, -0.48), 11.96, 11.96, lw=0.5, ec=[0.0, 0.0, 1.0, 1.0], fc=[0.0, 0.0, 0.0, 0.0], zorder=99 )
    #ax.add_patch(extent1)
    #ax.add_patch(extent2)

    kernel1 = patches.Rectangle((px_area - r, py_area - r),
                                2 * r,
                                2 * r,
                                lw=1.5,
                                ec=[0.0, 0.0, 0.0, 1.0],
                                fc=[1.0, 1.0, 1.0, 0.0])
    kernel2 = patches.Rectangle((px_area - r, py_area - r),
                                2 * r,
                                2 * r,
                                lw=0.5,
                                ec=[0.0, 1.0, 0.0, 1.0],
                                fc=[0.0, 0.0, 0.0, 0.0])
    ax.add_patch(kernel1)
    ax.add_patch(kernel2)

    ax.set_aspect('equal')
    ax.set_xlim([-0.5, width - 0.5])
    ax.set_ylim([height - 0.5, -0.5])

    #ax.plot(px_area, py_area, "x", ms=2, mew=0.3, color=[1.0, 1.0, 1.0, 1.0], mfc='None')
    ax.plot(px_area,
            py_area,
            "o",
            ms=1.5,
            mew=0.3,
            mec=[0.0, 0.0, 0.0, 1.0],
            mfc=[0.0, 1.0, 0.0, 1.0])
    ax.plot(px_area + offset_x_area,
            py_area + offset_y_area,
            "o",
            ms=1.5,
            mew=0.3,
            mec=[0.0, 0.0, 0.0, 1.0],
            mfc=[0.0, 0.0, 1.0, 1.0])

    ax.xaxis.tick_top()
    ax.tick_params(axis='both',
                   which='both',
                   left='off',
                   right='off',
                   bottom='off',
                   top='off',
                   labeltop='on',
                   pad=1,
                   labelsize=4)
    ax.xaxis.set_major_locator(plt.NullLocator())
    ax.yaxis.set_major_locator(plt.NullLocator())

    fig.tight_layout()

    fig.savefig(plotname + ".pdf",
                pad_inches=0,
                bbox_inches='tight',
                dpi=fig.dpi)  # pdf
    fig.savefig(plotname + ".pgf",
                pad_inches=0,
                bbox_inches='tight',
                dpi=fig.dpi)  # pgf
コード例 #6
0
def plot_convolution2(plotname, tsframe, tsframe_max, paperwidth):
    colormap = plt.get_cmap('YlOrRd_r')
    colormap.set_under([0.2, 0.2, 0.2])

    figure_width = paperwidth
    figure_height = paperwidth
    figure_size = [figure_width, figure_height]
    config.load_config_small()

    width = tsframe.shape[1]
    height = tsframe.shape[0]
    xs, ys = np.meshgrid(np.arange(0, width + 1), np.arange(0, height + 1))

    fig, axes = plt.subplots(nrows=1,
                             ncols=1,
                             sharex=False,
                             sharey=False,
                             squeeze=True,
                             figsize=figure_size,
                             dpi=100)
    ax = axes
    # Workaround inverted y-axis
    ax.invert_yaxis()

    # pcolormesh aligns cells on their edges, while imshow aligns them on their centers.
    ax.pcolormesh(xs - 0.5,
                  ys - 0.5,
                  tsframe,
                  cmap=colormap,
                  vmin=0.1,
                  vmax=tsframe_max,
                  shading="faceted",
                  linestyle="dashed",
                  linewidth=0.5,
                  edgecolor=[0.0, 0.0, 0.0])

    # Absolute number
    #for i,j in ((x,y) for x in np.arange(0, len(tsframe))
    #    for y in np.arange(0, len(tsframe[0]))):
    #        if tsframe[i][j] >= 1:
    #            ax.annotate(str(int(tsframe[i][j])), xy=(j,i), fontsize=3.5, ha='center', va='center')

    #find peak
    poi = np.asarray(np.unravel_index(np.argmax(tsframe), tsframe.shape))
    px = poi[1]
    py = poi[0]

    ax.plot(px,
            py,
            "o",
            ms=1.5,
            mew=0.3,
            mec=[0.0, 0.0, 0.0, 1.0],
            mfc=[0.0, 0.0, 1.0, 1.0])
    ax.plot(px - 1,
            py,
            "o",
            ms=1.5,
            mew=0.3,
            mec=[0.0, 0.0, 0.0, 1.0],
            mfc=[1.0, 1.0, 1.0, 1.0])
    ax.plot(px + 1,
            py,
            "o",
            ms=1.5,
            mew=0.3,
            mec=[0.0, 0.0, 0.0, 1.0],
            mfc=[1.0, 1.0, 1.0, 1.0])
    ax.plot(px,
            py - 1,
            "o",
            ms=1.52,
            mew=0.3,
            mec=[0.0, 0.0, 0.0, 1.0],
            mfc=[1.0, 1.0, 1.0, 1.0])
    ax.plot(px,
            py + 1,
            "o",
            ms=1.5,
            mew=0.3,
            mec=[0.0, 0.0, 0.0, 1.0],
            mfc=[1.0, 1.0, 1.0, 1.0])

    cx = (tsframe.shape[1] - 1) / 2
    cy = (tsframe.shape[0] - 1) / 2
    ax.plot(cx, cy, "x", ms=2, mew=0.3, color=[1.0, 1.0, 1.0, 1.0], mfc='None')

    r = 1.5
    kernel1 = patches.Rectangle((px - r, py - r),
                                2 * r,
                                2 * r,
                                lw=1.5,
                                ec=[0.0, 0.0, 0.0, 1.0],
                                fc=[1.0, 1.0, 1.0, 0.0])
    kernel2 = patches.Rectangle((px - r, py - r),
                                2 * r,
                                2 * r,
                                lw=0.5,
                                ec=[0.0, 0.0, 1.0, 1.0],
                                fc=[0.0, 0.0, 0.0, 0.0])
    ax.add_patch(kernel1)
    ax.add_patch(kernel2)

    ax.set_aspect('equal')
    ax.set_xlim([-0.5, width - 0.5])
    ax.set_ylim([height - 0.5, -0.5])

    ax.xaxis.tick_top()
    ax.tick_params(axis='both',
                   which='both',
                   left='off',
                   right='off',
                   bottom='off',
                   top='off',
                   labeltop='on',
                   pad=1,
                   labelsize=4)
    #ax.xaxis.set_major_locator(plt.NullLocator())
    #ax.yaxis.set_major_locator(plt.NullLocator())

    fig.tight_layout()

    fig.savefig(plotname + ".pdf",
                pad_inches=0,
                bbox_inches='tight',
                dpi=fig.dpi)  # pdf
    fig.savefig(plotname + ".pgf",
                pad_inches=0,
                bbox_inches='tight',
                dpi=fig.dpi)  # pgf
コード例 #7
0
def plot_convolution(plotname, tsframe, tsframe_max, paperwidth):
    colormap = plt.get_cmap('YlOrRd_r')
    colormap.set_under([0.2, 0.2, 0.2])

    figure_width = paperwidth
    figure_height = paperwidth
    figure_size = [figure_width, figure_height]
    config.load_config_small()

    width = tsframe.shape[1]
    height = tsframe.shape[0]
    xs, ys = np.meshgrid(np.arange(0, width + 1), np.arange(0, height + 1))

    fig, axes = plt.subplots(nrows=1,
                             ncols=1,
                             sharex=False,
                             sharey=False,
                             squeeze=True,
                             figsize=figure_size,
                             dpi=100)
    ax = axes
    # Workaround inverted y-axis
    ax.invert_yaxis()

    # pcolormesh aligns cells on their edges, while imshow aligns them on their centers.
    ax.pcolormesh(xs - 0.5,
                  ys - 0.5,
                  tsframe,
                  cmap=colormap,
                  vmin=0.1,
                  vmax=tsframe_max,
                  shading="faceted",
                  linestyle="dashed",
                  linewidth=0.5,
                  edgecolor=[0.0, 0.0, 0.0])

    # Absolute number
    #for i,j in ((x,y) for x in np.arange(0, len(tsframe))
    #    for y in np.arange(0, len(tsframe[0]))):
    #        if tsframe[i][j] >= 1:
    #            ax.annotate(str(int(tsframe[i][j])), xy=(j,i), fontsize=3.5, ha='center', va='center')

    ax.set_aspect('equal')
    ax.set_xlim([-0.5, width - 0.5])
    ax.set_ylim([height - 0.5, -0.5])

    ax.xaxis.tick_top()
    ax.tick_params(axis='both',
                   which='both',
                   left='off',
                   right='off',
                   bottom='off',
                   top='off',
                   labeltop='on',
                   pad=1,
                   labelsize=4)
    #ax.xaxis.set_major_locator(plt.NullLocator())
    #ax.yaxis.set_major_locator(plt.NullLocator())

    fig.tight_layout()

    fig.savefig(plotname + ".pdf",
                pad_inches=0,
                bbox_inches='tight',
                dpi=fig.dpi)  # pdf
    fig.savefig(plotname + ".pgf",
                pad_inches=0,
                bbox_inches='tight',
                dpi=fig.dpi)  # pgf
コード例 #8
0
def plot_convolution3(plotname, tsframe, paperwidth):
    colormap=plt.get_cmap('YlOrRd_r')
    colormap.set_under([0.2, 0.2, 0.2])

    figure_width = paperwidth
    figure_height = paperwidth
    figure_size = [figure_width, figure_height]
    config.load_config_small()


    # find peak and scale neighbourhood
    poi = np.asarray(np.unravel_index(np.argmax(tsframe), tsframe.shape))
    px = poi[1]
    py = poi[0]

    r = 1
    scalefactor = 4.0
    peak_area = tsframe[py-r:py+r+1, px-r:px+r+1]
    peak_area = scipy.ndimage.zoom(peak_area, scalefactor, order=3)
    # Point of interest of peak_area
    poi_area = np.asarray(np.unravel_index(np.argmax(peak_area), peak_area.shape))
    px_area = poi_area[1]
    py_area = poi_area[0]
   
    offset_x_area = (scalefactor*(2*r+1)-1)/2.0 - px_area
    offset_y_area = (scalefactor*(2*r+1)-1)/2.0 - py_area

    width = peak_area.shape[1]; height = peak_area.shape[0]
    xs,ys = np.meshgrid(np.arange(0, width+1), np.arange(0, height+1))
  
  
    fig, axes = plt.subplots(nrows=1, ncols=1, sharex=False, sharey=False, squeeze=True, figsize=figure_size, dpi=100)
    ax = axes
    # Workaround inverted y-axis
    ax.invert_yaxis()

    # pcolormesh aligns cells on their edges, while imshow aligns them on their centers.
    ax.pcolormesh(xs-0.5, ys-0.5, peak_area, cmap=colormap, vmin=0.1, vmax=np.max(peak_area),
                  shading="faceted", linestyle="dashed", linewidth=0.5, edgecolor=[0.0, 0.0, 0.0])

    # Absolute number
    #for i,j in ((x,y) for x in np.arange(0, len(tsframe))
    #    for y in np.arange(0, len(tsframe[0]))):
    #        if tsframe[i][j] >= 1:
    #            ax.annotate(str(int(tsframe[i][j])), xy=(j,i), fontsize=3.5, ha='center', va='center')


    r = 3.5
    #extent1 =  patches.Rectangle((-0.48, -0.48), 11.96, 11.96, lw=1.5, ec=[0.0, 0.0, 0.0, 1.0], fc=[1.0, 1.0, 1.0, 0.0], zorder=98 )
    #extent2 =  patches.Rectangle((-0.48, -0.48), 11.96, 11.96, lw=0.5, ec=[0.0, 0.0, 1.0, 1.0], fc=[0.0, 0.0, 0.0, 0.0], zorder=99 )
    #ax.add_patch(extent1)
    #ax.add_patch(extent2)
    
    kernel1 =  patches.Rectangle((px_area-r, py_area-r), 2*r, 2*r, lw=1.5, ec=[0.0, 0.0, 0.0, 1.0], fc=[1.0, 1.0, 1.0, 0.0] )
    kernel2 =  patches.Rectangle((px_area-r, py_area-r), 2*r, 2*r, lw=0.5, ec=[0.0, 1.0, 0.0, 1.0], fc=[0.0, 0.0, 0.0, 0.0] )
    ax.add_patch(kernel1)
    ax.add_patch(kernel2)
    
    ax.set_aspect('equal')
    ax.set_xlim([-0.5, width-0.5])
    ax.set_ylim([height-0.5, -0.5])


    #ax.plot(px_area, py_area, "x", ms=2, mew=0.3, color=[1.0, 1.0, 1.0, 1.0], mfc='None')
    ax.plot(px_area, py_area, "o", ms=1.5, mew=0.3, mec=[0.0, 0.0, 0.0, 1.0], mfc=[0.0, 1.0, 0.0, 1.0])
    ax.plot(px_area+offset_x_area, py_area+offset_y_area, "o", ms=1.5, mew=0.3, mec=[0.0, 0.0, 0.0, 1.0], mfc=[0.0, 0.0, 1.0, 1.0])
    


    ax.xaxis.tick_top()
    ax.tick_params(axis='both', which='both', left='off', right='off', bottom='off', top='off', labeltop='on',
                   pad=1, labelsize=4)
    ax.xaxis.set_major_locator(plt.NullLocator())
    ax.yaxis.set_major_locator(plt.NullLocator())

    fig.tight_layout()

    fig.savefig(plotname+".pdf", pad_inches=0, bbox_inches='tight', dpi=fig.dpi) # pdf
    fig.savefig(plotname+".pgf", pad_inches=0, bbox_inches='tight', dpi=fig.dpi) # pgf
コード例 #9
0
def plot_convolution2(plotname, tsframe, tsframe_max, paperwidth):
    colormap=plt.get_cmap('YlOrRd_r')
    colormap.set_under([0.2, 0.2, 0.2])

    figure_width = paperwidth
    figure_height = paperwidth
    figure_size = [figure_width, figure_height]
    config.load_config_small()

    width = tsframe.shape[1]; height = tsframe.shape[0]
    xs,ys = np.meshgrid(np.arange(0, width+1), np.arange(0, height+1))
   
    fig, axes = plt.subplots(nrows=1, ncols=1, sharex=False, sharey=False, squeeze=True, figsize=figure_size, dpi=100)
    ax = axes
    # Workaround inverted y-axis
    ax.invert_yaxis()

    # pcolormesh aligns cells on their edges, while imshow aligns them on their centers.
    ax.pcolormesh(xs-0.5, ys-0.5, tsframe, cmap=colormap, vmin=0.1, vmax=tsframe_max,
                  shading="faceted", linestyle="dashed", linewidth=0.5, edgecolor=[0.0, 0.0, 0.0])

    # Absolute number
    #for i,j in ((x,y) for x in np.arange(0, len(tsframe))
    #    for y in np.arange(0, len(tsframe[0]))):
    #        if tsframe[i][j] >= 1:
    #            ax.annotate(str(int(tsframe[i][j])), xy=(j,i), fontsize=3.5, ha='center', va='center')

    #find peak
    poi = np.asarray(np.unravel_index(np.argmax(tsframe), tsframe.shape))
    px = poi[1]
    py = poi[0]

    ax.plot(px, py, "o", ms=1.5, mew=0.3, mec=[0.0, 0.0, 0.0, 1.0], mfc=[0.0, 0.0, 1.0, 1.0])
    ax.plot(px-1, py, "o", ms=1.5, mew=0.3, mec=[0.0, 0.0, 0.0, 1.0], mfc=[1.0, 1.0, 1.0, 1.0])
    ax.plot(px+1, py, "o", ms=1.5, mew=0.3, mec=[0.0, 0.0, 0.0, 1.0], mfc=[1.0, 1.0, 1.0, 1.0])
    ax.plot(px, py-1, "o", ms=1.52, mew=0.3, mec=[0.0, 0.0, 0.0, 1.0], mfc=[1.0, 1.0, 1.0, 1.0])
    ax.plot(px, py+1, "o", ms=1.5, mew=0.3, mec=[0.0, 0.0, 0.0, 1.0], mfc=[1.0, 1.0, 1.0, 1.0])

    cx = (tsframe.shape[1]-1)/2
    cy = (tsframe.shape[0]-1)/2
    ax.plot(cx, cy, "x", ms=2, mew=0.3, color=[1.0, 1.0, 1.0, 1.0], mfc='None')
 
    r = 1.5
    kernel1 =  patches.Rectangle((px-r, py-r), 2*r, 2*r, lw=1.5, ec=[0.0, 0.0, 0.0, 1.0], fc=[1.0, 1.0, 1.0, 0.0] )
    kernel2 =  patches.Rectangle((px-r, py-r), 2*r, 2*r, lw=0.5, ec=[0.0, 0.0, 1.0, 1.0], fc=[0.0, 0.0, 0.0, 0.0]  )
    ax.add_patch(kernel1)
    ax.add_patch(kernel2)
    
    ax.set_aspect('equal')
    ax.set_xlim([-0.5, width-0.5])
    ax.set_ylim([height-0.5, -0.5])

    ax.xaxis.tick_top()
    ax.tick_params(axis='both', which='both', left='off', right='off', bottom='off', top='off', labeltop='on',
                   pad=1, labelsize=4)
    #ax.xaxis.set_major_locator(plt.NullLocator())
    #ax.yaxis.set_major_locator(plt.NullLocator())

    fig.tight_layout()

    fig.savefig(plotname+".pdf", pad_inches=0, bbox_inches='tight', dpi=fig.dpi) # pdf
    fig.savefig(plotname+".pgf", pad_inches=0, bbox_inches='tight', dpi=fig.dpi) # pgf
コード例 #10
0
# Create legend from custom artist/label lists
#plt.figlegend([artist for artist in artists_category], [label for label in unique_labels], 
#          fontsize='x-small', labelspacing=0.5, handletextpad=0.05,
#          loc='center right', bbox_to_anchor=(0, 0.5, 1, 1), bbox_transform=plt.gcf().transFigure )


legend = plt.legend([artist for artist in artists_category], [label for label in unique_labels], ncol=3, loc='center',
                    fontsize='small', labelspacing=0.5, handletextpad=0.05, columnspacing=0.5, borderpad=0.5,
                    fancybox=True, shadow=False, framealpha=1.0)

plotname = "scatterplotmatrix_legend"
fig.savefig(plotname+".pdf", pad_inches=0, dpi=fig.dpi) # pdf
fig.savefig(plotname+".pgf", pad_inches=0, dpi=fig.dpi) # pgf
plt.close()
'''
'''
#######################################################
# Bean plot (standardized features)
#######################################################
import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt

config.load_config_small()
figure_size = [1*text_width, 1*text_height]


n_columns = 54
n_rows = 12 # 36
rows = np.array([[0, 12], [12, 24], [24, 36]])
#labels = np.arange(0, 54, 1)