コード例 #1
0
    def test_latest_version(self, download_two_model_versions, get_test_dir,
                            start_server_update_flow_latest,
                            create_channel_for_update_flow_latest):
        resnet_v1, resnet_v2 = download_two_model_versions
        dir = get_test_dir + '/saved_models/' + 'update/'
        resnet_v1_copy_dir = copy_model(resnet_v1, 1, dir)
        time.sleep(8)
        stub = create_channel_for_update_flow_latest

        print("Getting info about resnet model")
        model_name = 'resnet'
        out_name = 'resnet_v1_50/predictions/Reshape_1'
        expected_input_metadata = {
            'input': {
                'dtype': 1,
                'shape': [1, 3, 224, 224]
            }
        }
        expected_output_metadata = {out_name: {'dtype': 1, 'shape': [1, 1000]}}
        request = get_model_metadata(model_name=model_name)
        response = stub.GetModelMetadata(request, 10)
        input_metadata, output_metadata = model_metadata_response(
            response=response)

        print(output_metadata)
        assert model_name == response.model_spec.name
        assert expected_input_metadata == input_metadata
        assert expected_output_metadata == output_metadata
        shutil.rmtree(resnet_v1_copy_dir)
        resnet_v2_copy_dir = copy_model(resnet_v2, 2, dir)
        time.sleep(3)

        out_name = 'resnet_v2_50/predictions/Reshape_1'
        expected_input_metadata = {
            'input': {
                'dtype': 1,
                'shape': [1, 3, 224, 224]
            }
        }
        expected_output_metadata = {out_name: {'dtype': 1, 'shape': [1, 1001]}}
        request = get_model_metadata(model_name=model_name)
        response = stub.GetModelMetadata(request, 10)
        input_metadata, output_metadata = model_metadata_response(
            response=response)

        print(output_metadata)
        assert model_name == response.model_spec.name
        assert expected_input_metadata == input_metadata
        assert expected_output_metadata == output_metadata
        shutil.rmtree(resnet_v2_copy_dir)
コード例 #2
0
    def test_latest_version_rest(self, download_two_model_versions,
                                 get_test_dir,
                                 start_server_update_flow_latest):
        resnet_v1, resnet_v2 = download_two_model_versions
        dir = get_test_dir + '/saved_models/' + 'update/'
        resnet_v1_copy_dir = copy_model(resnet_v1, 1, dir)
        time.sleep(8)

        print("Getting info about resnet model")
        model_name = 'resnet'
        out_name = 'resnet_v1_50/predictions/Reshape_1'
        expected_input_metadata = {
            'input': {
                'dtype': 1,
                'shape': [1, 3, 224, 224]
            }
        }
        expected_output_metadata = {out_name: {'dtype': 1, 'shape': [1, 1000]}}
        rest_url = 'http://localhost:5562/v1/models/resnet/metadata'
        response = get_model_metadata_response_rest(rest_url)
        input_metadata, output_metadata = model_metadata_response(
            response=response)

        print(output_metadata)
        assert model_name == response.model_spec.name
        assert expected_input_metadata == input_metadata
        assert expected_output_metadata == output_metadata
        shutil.rmtree(resnet_v1_copy_dir)
        resnet_v2_copy_dir = copy_model(resnet_v2, 2, dir)
        time.sleep(3)

        out_name = 'resnet_v2_50/predictions/Reshape_1'
        expected_input_metadata = {
            'input': {
                'dtype': 1,
                'shape': [1, 3, 224, 224]
            }
        }
        expected_output_metadata = {out_name: {'dtype': 1, 'shape': [1, 1001]}}
        response = get_model_metadata_response_rest(rest_url)
        input_metadata, output_metadata = model_metadata_response(
            response=response)

        print(output_metadata)
        assert model_name == response.model_spec.name
        assert expected_input_metadata == input_metadata
        assert expected_output_metadata == output_metadata
        shutil.rmtree(resnet_v2_copy_dir)
コード例 #3
0
    def test_get_model_metadata(self, resnet_2_out_model_downloader,
                                create_channel_for_port_mapping_server,
                                start_server_with_mapping):

        print("Downloaded model files:", resnet_2_out_model_downloader)

        stub = create_channel_for_port_mapping_server

        model_name = 'resnet_2_out'
        expected_input_metadata = {
            'new_key': {
                'dtype': 1,
                'shape': [1, 3, 224, 224]
            }
        }
        expected_output_metadata = {
            'mask': {
                'dtype': 1,
                'shape': [1, 2048, 7, 7]
            },
            'output': {
                'dtype': 1,
                'shape': [1, 2048, 7, 7]
            }
        }
        request = get_model_metadata(model_name=model_name)
        response = stub.GetModelMetadata(request, 10)
        print("response", response)
        input_metadata, output_metadata = model_metadata_response(
            response=response)

        assert model_name == response.model_spec.name
        assert expected_input_metadata == input_metadata
        assert expected_output_metadata == output_metadata
コード例 #4
0
    def test_get_model_metadata_rest(self, download_two_model_versions,
                                     start_server_multi_model):

        print("Downloaded model files:", download_two_model_versions)

        urls = ['http://localhost:5561/v1/models/resnet/metadata',
                'http://localhost:5561/v1/models/resnet/versions/1/metadata']

        expected_outputs_metadata = \
            [{'resnet_v2_50/predictions/Reshape_1':
                {'dtype': 1, 'shape': [1, 1001]}},
             {'resnet_v1_50/predictions/Reshape_1':
                {'dtype': 1, 'shape': [1, 1000]}}
             ]
        for x in range(len(urls)):
            print("Getting info about resnet model version:".format(
                urls[x]))
            model_name = 'resnet'
            expected_input_metadata = {'input': {'dtype': 1,
                                                 'shape': [1, 3, 224, 224]}}
            expected_output_metadata = expected_outputs_metadata[x]
            response = get_model_metadata_response_rest(urls[x])
            input_metadata, output_metadata = model_metadata_response(
                response=response)

            print(output_metadata)
            assert model_name == response.model_spec.name
            assert expected_input_metadata == input_metadata
            assert expected_output_metadata == output_metadata
コード例 #5
0
    def test_get_model_metadata(self, resnet_8_batch_model_downloader,
                                start_server_batch_model,
                                create_channel_for_batching_server):

        print("Downloaded model files:", resnet_8_batch_model_downloader)

        stub = create_channel_for_batching_server

        model_name = 'resnet'
        out_name = 'resnet_v1_50/predictions/Reshape_1'
        expected_input_metadata = {
            'input': {
                'dtype': 1,
                'shape': [8, 3, 224, 224]
            }
        }
        expected_output_metadata = {out_name: {'dtype': 1, 'shape': [8, 1000]}}
        request = get_model_metadata(model_name='resnet')
        response = stub.GetModelMetadata(request, 10)
        input_metadata, output_metadata = model_metadata_response(
            response=response)
        print(output_metadata)
        assert model_name == response.model_spec.name
        assert expected_input_metadata == input_metadata
        assert expected_output_metadata == output_metadata
コード例 #6
0
    def test_get_model_metadata(self, start_server_single_model_from_gc,
                                create_channel_for_port_single_server):

        result = start_server_single_model_from_gc
        print("docker starting status:", result)
        time.sleep(30)  # Waiting for inference service to load models
        assert result == 0, "docker container was not started successfully"

        stub = create_channel_for_port_single_server

        model_name = 'resnet'
        out_name = 'resnet_v1_50/predictions/Reshape_1'
        expected_input_metadata = {
            'input': {
                'dtype': 1,
                'shape': [1, 3, 224, 224]
            }
        }
        expected_output_metadata = {out_name: {'dtype': 1, 'shape': [1, 1, 1]}}
        request = get_model_metadata(model_name='resnet')
        response = stub.GetModelMetadata(request, 10)
        input_metadata, output_metadata = model_metadata_response(
            response=response)
        print(output_metadata)
        assert model_name == response.model_spec.name
        assert expected_input_metadata == input_metadata
        assert expected_output_metadata == output_metadata
コード例 #7
0
    def test_get_model_metadata_rest(self, resnet_2_out_model_downloader,
                                     start_server_with_mapping):

        print("Downloaded model files:", resnet_2_out_model_downloader)

        model_name = 'resnet_2_out'
        expected_input_metadata = {
            'new_key': {
                'dtype': 1,
                'shape': [1, 3, 224, 224]
            }
        }
        expected_output_metadata = {
            'mask': {
                'dtype': 1,
                'shape': [1, 2048, 7, 7]
            },
            'output': {
                'dtype': 1,
                'shape': [1, 2048, 7, 7]
            }
        }
        rest_url = 'http://localhost:5556/v1/models/resnet_2_out/metadata'
        response = get_model_metadata_response_rest(rest_url)
        print("response", response)
        input_metadata, output_metadata = model_metadata_response(
            response=response)

        assert model_name == response.model_spec.name
        assert expected_input_metadata == input_metadata
        assert expected_output_metadata == output_metadata
コード例 #8
0
    def test_get_model_metadata(self, download_two_model_versions,
                                start_server_multi_model,
                                create_channel_for_port_multi_server):

        print("Downloaded model files:", download_two_model_versions)

        # Connect to grpc service
        stub = create_channel_for_port_multi_server
        versions = [None, 1]

        expected_outputs_metadata = \
            [{'resnet_v2_50/predictions/Reshape_1':
                {'dtype': 1, 'shape': [1, 1001]}},
             {'resnet_v1_50/predictions/Reshape_1':
                {'dtype': 1, 'shape': [1, 1000]}}
             ]
        for x in range(len(versions)):
            print("Getting info about resnet model version:".format(
                versions[x]))
            model_name = 'resnet'
            expected_input_metadata = {'input': {'dtype': 1,
                                                 'shape': [1, 3, 224, 224]}}
            expected_output_metadata = expected_outputs_metadata[x]
            request = get_model_metadata(model_name='resnet',
                                         version=versions[x])
            response = stub.GetModelMetadata(request, 10)
            input_metadata, output_metadata = model_metadata_response(
                response=response)

            print(output_metadata)
            assert model_name == response.model_spec.name
            assert expected_input_metadata == input_metadata
            assert expected_output_metadata == output_metadata
コード例 #9
0
    def test_get_model_metadata(self, download_two_models,
                                start_server_multi_model,
                                create_channel_for_port_multi_server):
        """
        <b>Description</b>
        Execute inference request using gRPC interface hosting multiple models

        <b>input data</b>
        - directory with 2 models in IR format
        - docker image

        <b>fixtures used</b>
        - model downloader
        - input data downloader
        - service launching

        <b>Expected results</b>
        - response contains proper response about model metadata for both
        models set in config file:
        model resnet_v1_50, pnasnet_large
        - both served models handles appropriate input formats

        """
        print("Downloaded model files:", download_two_models)

        # Connect to grpc service
        stub = create_channel_for_port_multi_server
        versions = [None, 1]

        expected_outputs_metadata = \
            [{'resnet_v2_50/predictions/Reshape_1':
                {'dtype': 1, 'shape': [1, 1001]}},
             {'resnet_v1_50/predictions/Reshape_1':
                {'dtype': 1, 'shape': [1, 1000]}}
             ]
        for x in range(len(versions)):
            print("Getting info about resnet model version:".format(
                versions[x]))
            model_name = 'resnet'
            expected_input_metadata = {
                'input': {
                    'dtype': 1,
                    'shape': [1, 3, 224, 224]
                }
            }
            expected_output_metadata = expected_outputs_metadata[x]
            request = get_model_metadata(model_name='resnet',
                                         version=versions[x])
            response = stub.GetModelMetadata(request, 10)
            input_metadata, output_metadata = model_metadata_response(
                response=response)

            print(output_metadata)
            assert model_name == response.model_spec.name
            assert expected_input_metadata == input_metadata
            assert expected_output_metadata == output_metadata
コード例 #10
0
    def test_get_model_metadata_rest(self, download_two_models,
                                     start_server_multi_model):
        """
        <b>Description</b>
        Execute inference request using REST API interface hosting multiple
        models

        <b>input data</b>
        - directory with 2 models in IR format
        - docker image

        <b>fixtures used</b>
        - model downloader
        - input data downloader
        - service launching

        <b>Expected results</b>
        - response contains proper response about model metadata for both
        models set in config file:
        model resnet_v1_50, pnasnet_large
        - both served models handles appropriate input formats

        """
        print("Downloaded model files:", download_two_models)

        urls = [
            'http://localhost:5561/v1/models/resnet/metadata',
            'http://localhost:5561/v1/models/resnet/versions/1/metadata'
        ]

        expected_outputs_metadata = \
            [{'resnet_v2_50/predictions/Reshape_1':
                {'dtype': 1, 'shape': [1, 1001]}},
             {'resnet_v1_50/predictions/Reshape_1':
                {'dtype': 1, 'shape': [1, 1000]}}
             ]
        for x in range(len(urls)):
            print("Getting info about resnet model version:".format(urls[x]))
            model_name = 'resnet'
            expected_input_metadata = {
                'input': {
                    'dtype': 1,
                    'shape': [1, 3, 224, 224]
                }
            }
            expected_output_metadata = expected_outputs_metadata[x]
            response = get_model_metadata_response_rest(urls[x])
            input_metadata, output_metadata = model_metadata_response(
                response=response)

            print(output_metadata)
            assert model_name == response.model_spec.name
            assert expected_input_metadata == input_metadata
            assert expected_output_metadata == output_metadata
コード例 #11
0
    def test_get_model_metadata(self, start_server_single_model_from_gc,
                                create_channel_for_port_single_server):

        stub = create_channel_for_port_single_server

        model_name = 'resnet'
        out_name = 'resnet_v1_50/predictions/Reshape_1'
        expected_input_metadata = {'input': {'dtype': 1,
                                             'shape': [1, 3, 224, 224]}}
        expected_output_metadata = {out_name: {'dtype': 1,
                                               'shape': [1, 1000]}}
        request = get_model_metadata(model_name='resnet')
        response = stub.GetModelMetadata(request, 10)
        input_metadata, output_metadata = model_metadata_response(
            response=response)
        print(output_metadata)
        assert model_name == response.model_spec.name
        assert expected_input_metadata == input_metadata
        assert expected_output_metadata == output_metadata
コード例 #12
0
    def test_get_model_metadata_rest(self, resnet_8_batch_model_downloader,
                                     start_server_batch_model):

        print("Downloaded model files:", resnet_8_batch_model_downloader)

        model_name = 'resnet'
        out_name = 'resnet_v1_50/predictions/Reshape_1'
        expected_input_metadata = {
            'input': {
                'dtype': 1,
                'shape': [8, 3, 224, 224]
            }
        }
        expected_output_metadata = {out_name: {'dtype': 1, 'shape': [8, 1000]}}
        rest_url = 'http://localhost:5557/v1/models/resnet/metadata'
        response = get_model_metadata_response_rest(rest_url)
        input_metadata, output_metadata = model_metadata_response(
            response=response)
        print(output_metadata)
        assert model_name == response.model_spec.name
        assert expected_input_metadata == input_metadata
        assert expected_output_metadata == output_metadata
コード例 #13
0
    def test_get_model_metadata(self, resnet_2_out_model_downloader,
                                create_channel_for_port_mapping_server,
                                start_server_with_mapping):

        print("Downloaded model files:", resnet_2_out_model_downloader)
        result = start_server_with_mapping
        print("docker starting status:", result)
        time.sleep(30)  # Waiting for inference service to load models
        assert result == 0, "docker container was not started successfully"

        stub = create_channel_for_port_mapping_server

        model_name = 'resnet_2_out'
        expected_input_metadata = {
            'new_key': {
                'dtype': 1,
                'shape': [1, 3, 224, 224]
            }
        }
        expected_output_metadata = {
            'mask': {
                'dtype': 1,
                'shape': [1, 2048, 7, 7]
            },
            'output': {
                'dtype': 1,
                'shape': [1, 2048, 7, 7]
            }
        }
        request = get_model_metadata(model_name=model_name)
        response = stub.GetModelMetadata(request, 10)
        print("response", response)
        input_metadata, output_metadata = model_metadata_response(
            response=response)

        assert model_name == response.model_spec.name
        assert expected_input_metadata == input_metadata
        assert expected_output_metadata == output_metadata
    def test_get_model_metadata_rest(self, model_version_policy_models,
                                     start_server_model_ver_policy, model_name,
                                     throw_error):
        """
        <b>Description</b>
        Execute GetModelMetadata request using gRPC interface
        hosting multiple models

        <b>input data</b>
        - directory with 2 models in IR format
        - docker image

        <b>fixtures used</b>
        - model downloader
        - input data downloader
        - service launching

        <b>Expected results</b>
        - response contains proper response about model metadata for both
        models set in config file:
        model resnet_v1_50, pnasnet_large
        - both served models handles appropriate input formats

        """
        print("Downloaded model files:", model_version_policy_models)

        print("Getting info about resnet model")
        versions = [1, 2, 3]
        expected_outputs_metadata = [{
            'resnet_v1_50/predictions/Reshape_1': {
                'dtype': 1,
                'shape': [1, 1000]
            }
        }, {
            'resnet_v2_50/predictions/Reshape_1': {
                'dtype': 1,
                'shape': [1, 1001]
            }
        }, {
            'mask': {
                'dtype': 1,
                'shape': [1, 2048, 7, 7]
            },
            'output': {
                'dtype': 1,
                'shape': [1, 2048, 7, 7]
            }
        }]
        expected_inputs_metadata = [{
            'input': {
                'dtype': 1,
                'shape': [1, 3, 224, 224]
            }
        }, {
            'input': {
                'dtype': 1,
                'shape': [1, 3, 224, 224]
            }
        }, {
            'new_key': {
                'dtype': 1,
                'shape': [1, 3, 224, 224]
            }
        }]
        for x in range(len(versions)):
            print("Getting info about resnet model version:".format(
                versions[x]))
            expected_input_metadata = expected_inputs_metadata[x]
            expected_output_metadata = expected_outputs_metadata[x]
            rest_url = 'http://localhost:5560/v1/models/{}/' \
                       'versions/{}/metadata'.format(model_name, versions[x])
            result = requests.get(rest_url)
            print(result.text)
            if not throw_error[x]:
                output_json = result.text
                metadata_pb = get_model_metadata_pb2.\
                    GetModelMetadataResponse()
                response = Parse(output_json,
                                 metadata_pb,
                                 ignore_unknown_fields=False)
                input_metadata, output_metadata = model_metadata_response(
                    response=response)

                print(output_metadata)
                assert model_name == response.model_spec.name
                assert expected_input_metadata == input_metadata
                assert expected_output_metadata == output_metadata
            else:
                assert 404 == result.status_code
    def test_get_model_metadata(self, model_version_policy_models,
                                start_server_model_ver_policy,
                                create_channel_for_model_ver_pol_server,
                                model_name, throw_error):
        """
        <b>Description</b>
        Execute GetModelMetadata request using gRPC interface
        hosting multiple models

        <b>input data</b>
        - directory with 2 models in IR format
        - docker image

        <b>fixtures used</b>
        - model downloader
        - input data downloader
        - service launching

        <b>Expected results</b>
        - response contains proper response about model metadata for both
        models set in config file:
        model resnet_v1_50, pnasnet_large
        - both served models handles appropriate input formats

        """
        print("Downloaded model files:", model_version_policy_models)

        # Connect to grpc service
        stub = create_channel_for_model_ver_pol_server

        print("Getting info about resnet model")
        versions = [1, 2, 3]
        expected_outputs_metadata = [{
            'resnet_v1_50/predictions/Reshape_1': {
                'dtype': 1,
                'shape': [1, 1000]
            }
        }, {
            'resnet_v2_50/predictions/Reshape_1': {
                'dtype': 1,
                'shape': [1, 1001]
            }
        }, {
            'mask': {
                'dtype': 1,
                'shape': [1, 2048, 7, 7]
            },
            'output': {
                'dtype': 1,
                'shape': [1, 2048, 7, 7]
            }
        }]
        expected_inputs_metadata = [{
            'input': {
                'dtype': 1,
                'shape': [1, 3, 224, 224]
            }
        }, {
            'input': {
                'dtype': 1,
                'shape': [1, 3, 224, 224]
            }
        }, {
            'new_key': {
                'dtype': 1,
                'shape': [1, 3, 224, 224]
            }
        }]
        for x in range(len(versions)):
            print("Getting info about resnet model version:".format(
                versions[x]))
            expected_input_metadata = expected_inputs_metadata[x]
            expected_output_metadata = expected_outputs_metadata[x]
            request = get_model_metadata(model_name=model_name,
                                         version=versions[x])
            if not throw_error[x]:
                response = stub.GetModelMetadata(request, 10)
                input_metadata, output_metadata = model_metadata_response(
                    response=response)

                print(output_metadata)
                assert model_name == response.model_spec.name
                assert expected_input_metadata == input_metadata
                assert expected_output_metadata == output_metadata
            else:
                with pytest.raises(AbortionError):
                    response = stub.GetModelMetadata(request, 10)
コード例 #16
0
    def test_specific_version_rest(self, download_two_model_versions,
                                   resnet_2_out_model_downloader, get_test_dir,
                                   start_server_update_flow_specific):
        resnet_v1, resnet_v2 = download_two_model_versions
        resnet_2_out = resnet_2_out_model_downloader
        dir = get_test_dir + '/saved_models/' + 'update/'
        resnet_v1_copy_dir = copy_model(resnet_v1, 1, dir)
        resnet_2_out_copy_dir = copy_model(resnet_2_out, 4, dir)
        time.sleep(8)

        # Available versions: 1, 4

        print("Getting info about resnet model")
        model_name = 'resnet'
        out_name_v1 = 'resnet_v1_50/predictions/Reshape_1'
        expected_input_metadata_v1 = {
            'input': {
                'dtype': 1,
                'shape': [1, 3, 224, 224]
            }
        }
        expected_output_metadata_v1 = {
            out_name_v1: {
                'dtype': 1,
                'shape': [1, 1000]
            }
        }
        rest_url_latest = 'http://localhost:5563/v1/models/resnet/' \
                          'versions/1/metadata'
        response = get_model_metadata_response_rest(rest_url_latest)
        input_metadata, output_metadata = model_metadata_response(
            response=response)

        print(output_metadata)
        assert model_name == response.model_spec.name
        assert expected_input_metadata_v1 == input_metadata
        assert expected_output_metadata_v1 == output_metadata

        rest_url = 'http://localhost:5563/v1/models/resnet/metadata'
        response_latest = get_model_metadata_response_rest(rest_url)
        print("response", response_latest)
        input_metadata_latest, output_metadata_latest = \
            model_metadata_response(response=response_latest)

        rest_url_v4 = 'http://localhost:5563/v1/models/resnet/' \
                      'versions/1/metadata'
        response_v4 = get_model_metadata_response_rest(rest_url_v4)
        print("response", response_v4)
        input_metadata_v4, output_metadata_v4 = model_metadata_response(
            response=response_latest)

        assert response_v4.model_spec.name == response_latest.model_spec.name
        assert input_metadata_v4 == input_metadata_latest
        assert output_metadata_v4 == output_metadata_latest

        # Model status check
        rest_status_url = 'http://localhost:5563/v1/models/resnet'
        status_response = get_model_status_response_rest(rest_status_url)
        versions_statuses = status_response.model_version_status
        assert len(versions_statuses) == 2
        for version_status in versions_statuses:
            assert version_status.version in [1, 4]
            assert version_status.state == ModelVersionState.AVAILABLE
            assert version_status.status.error_code == ErrorCode.OK
            assert version_status.status.error_message == _ERROR_MESSAGE[
                ModelVersionState.AVAILABLE][ErrorCode.OK]
        ###

        shutil.rmtree(resnet_2_out_copy_dir)
        resnet_v2_copy_dir = copy_model(resnet_v2, 3, dir)
        time.sleep(10)

        # Available versions: 1, 3

        rest_url = 'http://localhost:5563/v1/models/resnet/metadata'
        response_latest = get_model_metadata_response_rest(rest_url)
        print("response", response_latest)
        input_metadata_latest, output_metadata_latest = \
            model_metadata_response(response=response_latest)

        rest_url_v3 = 'http://localhost:5563/v1/models/resnet/' \
                      'versions/3/metadata'
        response_v3 = get_model_metadata_response_rest(rest_url_v3)
        print("response", response_v3)
        input_metadata_v3, output_metadata_v3 = model_metadata_response(
            response=response_v3)

        assert response_v3.model_spec.name == response_latest.model_spec.name
        assert input_metadata_v3 == input_metadata_latest
        assert output_metadata_v3 == output_metadata_latest

        # Model status check
        rest_status_url = 'http://localhost:5563/v1/models/resnet'
        status_response = get_model_status_response_rest(rest_status_url)
        versions_statuses = status_response.model_version_status
        assert len(versions_statuses) == 3
        for version_status in versions_statuses:
            assert version_status.version in [1, 3, 4]
            if version_status.version == 4:
                assert version_status.state == ModelVersionState.END
                assert version_status.status.error_code == ErrorCode.OK
                assert version_status.status.error_message == _ERROR_MESSAGE[
                    ModelVersionState.END][ErrorCode.OK]
            elif version_status.version == 1 or version_status.version == 3:
                assert version_status.state == ModelVersionState.AVAILABLE
                assert version_status.status.error_code == ErrorCode.OK
                assert version_status.status.error_message == _ERROR_MESSAGE[
                    ModelVersionState.AVAILABLE][ErrorCode.OK]
        ###

        # Available versions: 1, 3, 4

        resnet_2_out_copy_dir = copy_model(resnet_2_out, 4, dir)
        time.sleep(10)

        rest_url_v1 = 'http://localhost:5563/v1/models/resnet/' \
                      'versions/1/metadata'
        response_v1 = get_model_metadata_response_rest(rest_url_v1)
        input_metadata_v1, output_metadata_v1 = model_metadata_response(
            response=response_v1)

        assert model_name == response_v1.model_spec.name
        assert expected_input_metadata_v1 == input_metadata_v1
        assert expected_output_metadata_v1 == output_metadata_v1

        out_name_v3 = 'resnet_v2_50/predictions/Reshape_1'
        expected_input_metadata_v3 = {
            'input': {
                'dtype': 1,
                'shape': [1, 3, 224, 224]
            }
        }
        expected_output_metadata_v3 = {
            out_name_v3: {
                'dtype': 1,
                'shape': [1, 1001]
            }
        }

        rest_url_v3 = 'http://localhost:5563/v1/models/resnet/' \
                      'versions/3/metadata'
        response_v3 = get_model_metadata_response_rest(rest_url_v3)
        input_metadata_v3, output_metadata_v3 = model_metadata_response(
            response=response_v3)

        assert model_name == response_v3.model_spec.name
        assert expected_input_metadata_v3 == input_metadata_v3
        assert expected_output_metadata_v3 == output_metadata_v3

        expected_input_metadata_v4 = {
            'input': {
                'dtype': 1,
                'shape': [1, 3, 224, 224]
            }
        }
        expected_output_metadata_v4 = {
            'res5c_branch2c1': {
                'dtype': 1,
                'shape': [1, 2048, 7, 7]
            },
            'res5c_branch2c2': {
                'dtype': 1,
                'shape': [1, 2048, 7, 7]
            }
        }
        rest_url = 'http://localhost:5563/v1/models/resnet/metadata'
        response_v4 = get_model_metadata_response_rest(rest_url)
        input_metadata_v4, output_metadata_v4 = model_metadata_response(
            response=response_v4)

        assert model_name == response_v4.model_spec.name
        assert expected_input_metadata_v4 == input_metadata_v4
        assert expected_output_metadata_v4 == output_metadata_v4

        # Model status check
        rest_status_url = 'http://localhost:5563/v1/models/resnet'
        status_response = get_model_status_response_rest(rest_status_url)
        versions_statuses = status_response.model_version_status
        assert len(versions_statuses) == 3
        for version_status in versions_statuses:
            assert version_status.version in [1, 3, 4]
            assert version_status.state == ModelVersionState.AVAILABLE
            assert version_status.status.error_code == ErrorCode.OK
            assert version_status.status.error_message == _ERROR_MESSAGE[
                ModelVersionState.AVAILABLE][ErrorCode.OK]
        ###

        shutil.rmtree(resnet_v2_copy_dir)
        shutil.rmtree(resnet_v1_copy_dir)
        shutil.rmtree(resnet_2_out_copy_dir)
        time.sleep(10)
コード例 #17
0
    def test_get_model_metadata(self, download_two_models,
                                start_server_multi_model,
                                create_channel_for_port_multi_server):
        """
        <b>Description</b>
        Execute inference request using gRPC interface hosting multiple models

        <b>input data</b>
        - directory with 2 models in IR format
        - docker image

        <b>fixtures used</b>
        - model downloader
        - input data downloader
        - service launching

        <b>Expected results</b>
        - response contains proper response about model metadata for both
        models set in config file:
        model resnet_v1_50, pnasnet_large
        - both served models handles appropriate input formats

        """
        print("Downloaded model files:", download_two_models)

        # Starting docker with ie-serving
        result = start_server_multi_model
        print("docker starting multi model server status:", result)
        time.sleep(30)  # Waiting for inference service to load models
        assert result == 0, "docker container was not started successfully"

        # Connect to grpc service
        stub = create_channel_for_port_multi_server

        print("Getting info about resnet model")
        model_name = 'resnet_V1_50'
        out_name = 'resnet_v1_50/predictions/Reshape_1'
        expected_input_metadata = {
            'input': {
                'dtype': 1,
                'shape': [1, 3, 224, 224]
            }
        }
        expected_output_metadata = {out_name: {'dtype': 1, 'shape': [1, 1, 1]}}
        request = get_model_metadata(model_name='resnet_V1_50')
        response = stub.GetModelMetadata(request, 10)
        input_metadata, output_metadata = model_metadata_response(
            response=response)

        print(output_metadata)
        assert model_name == response.model_spec.name
        assert expected_input_metadata == input_metadata
        assert expected_output_metadata == output_metadata

        model_name = 'pnasnet_large'
        out_name = 'final_layer/predictions'
        request = get_model_metadata(model_name='pnasnet_large')
        response = stub.GetModelMetadata(request, 10)
        input_metadata, output_metadata = model_metadata_response(
            response=response)

        expected_input_metadata = {
            'input': {
                'dtype': 1,
                'shape': [1, 3, 331, 331]
            }
        }
        expected_output_metadata = {out_name: {'dtype': 1, 'shape': [1, 1, 1]}}
        print(output_metadata)
        assert model_name == response.model_spec.name
        assert expected_input_metadata == input_metadata
        assert expected_output_metadata == output_metadata
コード例 #18
0
    def test_latest_version_rest(self, download_two_model_versions,
                                 get_test_dir,
                                 start_server_update_flow_latest):
        resnet_v1, resnet_v2 = download_two_model_versions
        dir = get_test_dir + '/saved_models/' + 'update/'
        resnet_v1_copy_dir = copy_model(resnet_v1, 1, dir)
        time.sleep(8)

        print("Getting info about resnet model")
        model_name = 'resnet'
        out_name = 'resnet_v1_50/predictions/Reshape_1'
        expected_input_metadata = {
            'input': {
                'dtype': 1,
                'shape': [1, 3, 224, 224]
            }
        }
        expected_output_metadata = {out_name: {'dtype': 1, 'shape': [1, 1000]}}
        rest_url = 'http://localhost:5562/v1/models/resnet/metadata'
        response = get_model_metadata_response_rest(rest_url)
        input_metadata, output_metadata = model_metadata_response(
            response=response)

        print(output_metadata)
        assert model_name == response.model_spec.name
        assert expected_input_metadata == input_metadata
        assert expected_output_metadata == output_metadata

        # Model status check before update
        rest_status_url = 'http://localhost:5562/v1/models/resnet'
        status_response = get_model_status_response_rest(rest_status_url)
        versions_statuses = status_response.model_version_status
        version_status = versions_statuses[0]
        assert len(versions_statuses) == 1
        assert version_status.version == 1
        assert version_status.state == ModelVersionState.AVAILABLE
        assert version_status.status.error_code == ErrorCode.OK
        assert version_status.status.error_message == _ERROR_MESSAGE[
            ModelVersionState.AVAILABLE][ErrorCode.OK]
        ###

        shutil.rmtree(resnet_v1_copy_dir)
        resnet_v2_copy_dir = copy_model(resnet_v2, 2, dir)
        time.sleep(10)

        out_name = 'resnet_v2_50/predictions/Reshape_1'
        expected_input_metadata = {
            'input': {
                'dtype': 1,
                'shape': [1, 3, 224, 224]
            }
        }
        expected_output_metadata = {out_name: {'dtype': 1, 'shape': [1, 1001]}}
        response = get_model_metadata_response_rest(rest_url)
        input_metadata, output_metadata = model_metadata_response(
            response=response)

        print(output_metadata)
        assert model_name == response.model_spec.name
        assert expected_input_metadata == input_metadata
        assert expected_output_metadata == output_metadata

        # Model status check after update
        status_response = get_model_status_response_rest(rest_status_url)
        versions_statuses = status_response.model_version_status
        assert len(versions_statuses) == 2
        for version_status in versions_statuses:
            assert version_status.version in [1, 2]
            if version_status.version == 1:
                assert version_status.state == ModelVersionState.END
                assert version_status.status.error_code == ErrorCode.OK
                assert version_status.status.error_message == _ERROR_MESSAGE[
                    ModelVersionState.END][ErrorCode.OK]
            elif version_status.version == 2:
                assert version_status.state == ModelVersionState.AVAILABLE
                assert version_status.status.error_code == ErrorCode.OK
                assert version_status.status.error_message == _ERROR_MESSAGE[
                    ModelVersionState.AVAILABLE][ErrorCode.OK]
        ###

        shutil.rmtree(resnet_v2_copy_dir)
        time.sleep(10)
コード例 #19
0
    def test_update_rest_grpc(self, download_two_model_versions,
                              resnet_2_out_model_downloader, get_test_dir,
                              start_server_update_flow_specific,
                              create_channel_for_update_flow_specific):
        resnet_v1, resnet_v2 = download_two_model_versions
        resnet_2_out = resnet_2_out_model_downloader
        dir = get_test_dir + '/saved_models/' + 'update/'
        stub = create_channel_for_update_flow_specific
        resnet_v1_copy_dir = copy_model(resnet_v1, 1, dir)
        resnet_2_out_copy_dir = copy_model(resnet_2_out, 4, dir)
        time.sleep(8)

        # Available versions: 1, 4

        print("Getting info about resnet model")
        model_name = 'resnet'
        out_name_v1 = 'resnet_v1_50/predictions/Reshape_1'
        expected_input_metadata_v1 = {
            'input': {
                'dtype': 1,
                'shape': [1, 3, 224, 224]
            }
        }
        expected_output_metadata_v1 = {
            out_name_v1: {
                'dtype': 1,
                'shape': [1, 1000]
            }
        }
        request = get_model_metadata(model_name=model_name, version=1)
        response = stub.GetModelMetadata(request, 10)
        input_metadata, output_metadata = model_metadata_response(
            response=response)

        print(output_metadata)
        assert model_name == response.model_spec.name
        assert expected_input_metadata_v1 == input_metadata
        assert expected_output_metadata_v1 == output_metadata

        rest_url = 'http://localhost:5563/v1/models/resnet/metadata'
        response_latest = get_model_metadata_response_rest(rest_url)
        print("response", response_latest)
        input_metadata_latest, output_metadata_latest = \
            model_metadata_response(response=response_latest)

        request_v4 = get_model_metadata(model_name=model_name, version=4)
        response_v4 = stub.GetModelMetadata(request_v4, 10)
        print("response", response_v4)
        input_metadata_v4, output_metadata_v4 = model_metadata_response(
            response=response_latest)

        assert response_v4.model_spec.name == response_latest.model_spec.name
        assert input_metadata_v4 == input_metadata_latest
        assert output_metadata_v4 == output_metadata_latest

        shutil.rmtree(resnet_2_out_copy_dir)
        resnet_v2_copy_dir = copy_model(resnet_v2, 3, dir)
        time.sleep(3)

        # Available versions: 1, 3

        request_latest = get_model_metadata(model_name=model_name)
        response_latest = stub.GetModelMetadata(request_latest, 10)
        print("response", response_latest)
        input_metadata_latest, output_metadata_latest = \
            model_metadata_response(response=response_latest)

        rest_url = 'http://localhost:5563/v1/models/resnet/versions/3/metadata'
        response_v3 = get_model_metadata_response_rest(rest_url)
        print("response", response_v3)
        input_metadata_v3, output_metadata_v3 = model_metadata_response(
            response=response_v3)

        assert response_v3.model_spec.name == response_latest.model_spec.name
        assert input_metadata_v3 == input_metadata_latest
        assert output_metadata_v3 == output_metadata_latest

        # Available versions: 1, 3, 4

        resnet_2_out_copy_dir = copy_model(resnet_2_out, 4, dir)
        time.sleep(3)
        rest_url = 'http://localhost:5563/v1/models/resnet/versions/1/metadata'
        response_v1 = get_model_metadata_response_rest(rest_url)
        input_metadata_v1, output_metadata_v1 = model_metadata_response(
            response=response_v1)

        assert model_name == response.model_spec.name
        assert expected_input_metadata_v1 == input_metadata_v1
        assert expected_output_metadata_v1 == output_metadata_v1

        out_name_v3 = 'resnet_v2_50/predictions/Reshape_1'
        expected_input_metadata_v3 = {
            'input': {
                'dtype': 1,
                'shape': [1, 3, 224, 224]
            }
        }
        expected_output_metadata_v3 = {
            out_name_v3: {
                'dtype': 1,
                'shape': [1, 1001]
            }
        }

        request_v3 = get_model_metadata(model_name=model_name, version=3)
        response_v3 = stub.GetModelMetadata(request_v3, 10)
        input_metadata_v3, output_metadata_v3 = model_metadata_response(
            response=response_v3)

        assert model_name == response.model_spec.name
        assert expected_input_metadata_v3 == input_metadata_v3
        assert expected_output_metadata_v3 == output_metadata_v3

        expected_input_metadata_v4 = {
            'input': {
                'dtype': 1,
                'shape': [1, 3, 224, 224]
            }
        }
        expected_output_metadata_v4 = {
            'res5c_branch2c1': {
                'dtype': 1,
                'shape': [1, 2048, 7, 7]
            },
            'res5c_branch2c2': {
                'dtype': 1,
                'shape': [1, 2048, 7, 7]
            }
        }
        rest_url = 'http://localhost:5563/v1/models/resnet/versions/4/metadata'
        response_v4 = get_model_metadata_response_rest(rest_url)
        input_metadata_v4, output_metadata_v4 = model_metadata_response(
            response=response_v4)

        assert model_name == response_v4.model_spec.name
        assert expected_input_metadata_v4 == input_metadata_v4
        assert expected_output_metadata_v4 == output_metadata_v4

        shutil.rmtree(resnet_v2_copy_dir)
        shutil.rmtree(resnet_v1_copy_dir)
        shutil.rmtree(resnet_2_out_copy_dir)
コード例 #20
0
    def test_get_model_metadata_rest(self, download_two_models,
                                     start_server_multi_model):
        """
        <b>Description</b>
        Execute inference request using REST API interface hosting multiple
        models

        <b>input data</b>
        - directory with 2 models in IR format
        - docker image

        <b>fixtures used</b>
        - model downloader
        - input data downloader
        - service launching

        <b>Expected results</b>
        - response contains proper response about model metadata for both
        models set in config file:
        model resnet_v1_50, pnasnet_large
        - both served models handles appropriate input formats

        """
        print("Downloaded model files:", download_two_models)

        print("Getting info about resnet model")
        model_name = 'resnet_V1_50'
        out_name = 'resnet_v1_50/predictions/Reshape_1'
        expected_input_metadata = {
            'input': {
                'dtype': 1,
                'shape': [1, 3, 224, 224]
            }
        }
        expected_output_metadata = {out_name: {'dtype': 1, 'shape': [1, 1000]}}
        rest_url = 'http://localhost:5561/v1/models/resnet_V1_50/metadata'
        response = get_model_metadata_response_rest(rest_url)
        input_metadata, output_metadata = model_metadata_response(
            response=response)

        print(output_metadata)
        assert model_name == response.model_spec.name
        assert expected_input_metadata == input_metadata
        assert expected_output_metadata == output_metadata

        model_name = 'pnasnet_large'
        out_name = 'final_layer/predictions'
        rest_url = 'http://localhost:5561/v1/models/pnasnet_large/metadata'
        response = get_model_metadata_response_rest(rest_url)
        input_metadata, output_metadata = model_metadata_response(
            response=response)

        expected_input_metadata = {
            'input': {
                'dtype': 1,
                'shape': [4, 3, 331, 331]
            }
        }
        expected_output_metadata = {out_name: {'dtype': 1, 'shape': [4, 1001]}}
        print(output_metadata)
        assert model_name == response.model_spec.name
        assert expected_input_metadata == input_metadata
        assert expected_output_metadata == output_metadata