def score_las(filename_test, filename_gold): score = 0 with open(filename_test, 'r') as ftest, \ open(filename_gold, 'r') as fgold: test = las.load_conllu(ftest) gold = las.load_conllu(fgold) score = las.evaluate(gold, test)['LAS'].f1 return score
def evaluate(nlp, text_loc, gold_loc, sys_loc, limit=None): with text_loc.open("r", encoding="utf8") as text_file: texts = split_text(text_file.read()) docs = list(nlp.pipe(texts)) with sys_loc.open("w", encoding="utf8") as out_file: write_conllu(docs, out_file) with gold_loc.open("r", encoding="utf8") as gold_file: gold_ud = conll17_ud_eval.load_conllu(gold_file) with sys_loc.open("r", encoding="utf8") as sys_file: sys_ud = conll17_ud_eval.load_conllu(sys_file) scores = conll17_ud_eval.evaluate(gold_ud, sys_ud) return scores
def fetch_all_treebanks(ud_dir, languages, corpus, best_per_language): """" Fetch the txt files for all treebanks for a given set of languages """ all_treebanks = dict() treebank_size = dict() for l in languages: all_treebanks[l] = [] treebank_size[l] = 0 for treebank_dir in ud_dir.iterdir(): if treebank_dir.is_dir(): for txt_path in treebank_dir.iterdir(): if txt_path.name.endswith('-ud-' + corpus + '.txt'): file_lang = txt_path.name.split('_')[0] if file_lang in languages: gold_path = treebank_dir / txt_path.name.replace('.txt', '.conllu') stats_xml = treebank_dir / "stats.xml" # ignore treebanks where the texts are not publicly available if not _contains_blinded_text(stats_xml): if not best_per_language: all_treebanks[file_lang].append(txt_path) # check the tokens in the gold annotation to keep only the biggest treebank per language else: with gold_path.open(mode='r', encoding='utf-8') as gold_file: gold_ud = conll17_ud_eval.load_conllu(gold_file) gold_tokens = len(gold_ud.tokens) if treebank_size[file_lang] < gold_tokens: all_treebanks[file_lang] = [txt_path] treebank_size[file_lang] = gold_tokens return all_treebanks
def run_all_evals(models, treebanks, out_file, check_parse, print_freq_tasks): """" Run an evaluation for each language with its specified models and treebanks """ print_header = True for tb_lang, treebank_list in treebanks.items(): print() print("Language", tb_lang) for text_path in treebank_list: print(" Evaluating on", text_path) gold_path = text_path.parent / (text_path.stem + '.conllu') print(" Gold data from ", gold_path) # nested try blocks to ensure the code can continue with the next iteration after a failure try: with gold_path.open(mode='r', encoding='utf-8') as gold_file: gold_ud = conll17_ud_eval.load_conllu(gold_file) for nlp, nlp_loading_time, nlp_name in models[tb_lang]: try: print(" Benchmarking", nlp_name) tmp_output_path = text_path.parent / str('tmp_' + nlp_name + '.conllu') run_single_eval(nlp, nlp_loading_time, nlp_name, text_path, gold_ud, tmp_output_path, out_file, print_header, check_parse, print_freq_tasks) print_header = False except Exception as e: print(" Ran into trouble: ", str(e)) except Exception as e: print(" Ran into trouble: ", str(e))
def benchmark_model(model_name, test_data_path, ner_test_data): with open(test_data_path) as f: data = conllu.parse(f.read()) text = " ".join(d.metadata["text"] for d in data) load_model = getattr(importlib.import_module(model_name), "load") nlp = load_model() _parsed = StringIO(format_as_conllu(nlp(text), 1)) parsed = conll17_ud_eval.load_conllu(_parsed) gold = conll17_ud_eval.load_conllu_file(test_data_path) results = pd.DataFrame({ k: v.__dict__ for k, v in conll17_ud_eval.evaluate(gold, parsed).items() }).T print(results) diterator = DataIterator() test_sents = list( itertools.islice(diterator.tagged_sentences(ner_test_data), None)) scorer = Scorer() for sentence, annot in test_sents: doc_gold_text = nlp.make_doc(sentence) gold = GoldParse(doc_gold_text, entities=annot) predicted = nlp(sentence) scorer.score(predicted, gold) print(scorer.scores)
def evaluate(nlp, text_loc, gold_loc, sys_loc, limit=None): if text_loc.parts[-1].endswith(".conllu"): docs = [] with text_loc.open() as file_: for conllu_doc in read_conllu(file_): for conllu_sent in conllu_doc: words = [line[1] for line in conllu_sent] docs.append(Doc(nlp.vocab, words=words)) for name, component in nlp.pipeline: docs = list(component.pipe(docs)) else: with text_loc.open("r", encoding="utf8") as text_file: texts = split_text(text_file.read()) docs = list(nlp.pipe(texts)) with sys_loc.open("w", encoding="utf8") as out_file: write_conllu(docs, out_file) with gold_loc.open("r", encoding="utf8") as gold_file: gold_ud = conll17_ud_eval.load_conllu(gold_file) with sys_loc.open("r", encoding="utf8") as sys_file: sys_ud = conll17_ud_eval.load_conllu(sys_file) scores = conll17_ud_eval.evaluate(gold_ud, sys_ud) return docs, scores
def benchmark_model(model_name, test_data_path): with open(test_data_path) as f: data = conllu.parse(f.read()) text = " ".join(d.metadata["text"] for d in data) load_model = getattr(importlib.import_module(model_name), "load") nlp = load_model() _parsed = StringIO(format_as_conllu(nlp(text), 1)) parsed = conll17_ud_eval.load_conllu(_parsed) gold = conll17_ud_eval.load_conllu_file(test_data_path) results = pd.DataFrame({ k: v.__dict__ for k, v in conll17_ud_eval.evaluate(gold, parsed).items() }).T print(results)
def run_single_eval(nlp, loading_time, print_name, text_path, gold_ud, tmp_output_path, out_file, print_header, check_parse, print_freq_tasks): """" Run an evaluation of a model nlp on a certain specified treebank """ with text_path.open(mode='r', encoding='utf-8') as f: flat_text = f.read() # STEP 1: tokenize text tokenization_start = time.time() texts = split_text(flat_text) docs = list(nlp.pipe(texts)) tokenization_end = time.time() tokenization_time = tokenization_end - tokenization_start # STEP 2: record stats and timings tokens_per_s = int(len(gold_ud.tokens) / tokenization_time) print_header_1 = ['date', 'text_path', 'gold_tokens', 'model', 'loading_time', 'tokenization_time', 'tokens_per_s'] print_string_1 = [str(datetime.date.today()), text_path.name, len(gold_ud.tokens), print_name, "%.2f" % loading_time, "%.2f" % tokenization_time, tokens_per_s] # STEP 3: evaluate predicted tokens and features with tmp_output_path.open(mode="w", encoding="utf8") as tmp_out_file: write_conllu(docs, tmp_out_file) with tmp_output_path.open(mode="r", encoding="utf8") as sys_file: sys_ud = conll17_ud_eval.load_conllu(sys_file, check_parse=check_parse) tmp_output_path.unlink() scores = conll17_ud_eval.evaluate(gold_ud, sys_ud, check_parse=check_parse) # STEP 4: format the scoring results eval_headers = EVAL_PARSE if not check_parse: eval_headers = EVAL_NO_PARSE for score_name in eval_headers: score = scores[score_name] print_string_1.extend(["%.2f" % score.precision, "%.2f" % score.recall, "%.2f" % score.f1]) print_string_1.append("-" if score.aligned_accuracy is None else "%.2f" % score.aligned_accuracy) print_string_1.append("-" if score.undersegmented is None else "%.4f" % score.under_perc) print_string_1.append("-" if score.oversegmented is None else "%.4f" % score.over_perc) print_header_1.extend([score_name + '_p', score_name + '_r', score_name + '_F', score_name + '_acc', score_name + '_under', score_name + '_over']) if score_name in print_freq_tasks: print_header_1.extend([score_name + '_word_under_ex', score_name + '_shape_under_ex', score_name + '_word_over_ex', score_name + '_shape_over_ex']) d_under_words = get_freq_tuples(score.undersegmented, PRINT_TOTAL) d_under_shapes = get_freq_tuples([word_shape(x) for x in score.undersegmented], PRINT_TOTAL) d_over_words = get_freq_tuples(score.oversegmented, PRINT_TOTAL) d_over_shapes = get_freq_tuples([word_shape(x) for x in score.oversegmented], PRINT_TOTAL) # saving to CSV with ; seperator so blinding ; in the example output print_string_1.append( str({k: v for k, v in d_under_words if v > PRINT_FREQ}).replace(";", "*SEMICOLON*")) print_string_1.append( str({k: v for k, v in d_under_shapes if v > PRINT_FREQ}).replace(";", "*SEMICOLON*")) print_string_1.append( str({k: v for k, v in d_over_words if v > PRINT_FREQ}).replace(";", "*SEMICOLON*")) print_string_1.append( str({k: v for k, v in d_over_shapes if v > PRINT_FREQ}).replace(";", "*SEMICOLON*")) # STEP 5: print the formatted results to CSV if print_header: out_file.write(';'.join(map(str, print_header_1)) + '\n') out_file.write(';'.join(map(str, print_string_1)) + '\n')