コード例 #1
0
def alpha_beta_move(board,active_turn,depth,alpha = 2):
    swap_dict = {1:-1,-1:1}
    dummy_board = np.zeros((6,7))
    dummy_board[:] = board[:]
    options = cccc.available_moves(board)
    random.shuffle(options)
    if len(options) == 1:
        dummy_board[np.where(dummy_board[:,options[0]]==0)[0][-1],options[0]] = active_turn
        if cccc.winner(dummy_board):
            return (1,options[0]+1)
        else:
            return (0,options[0]+1)
    if depth ==0:
        return (0, options[np.random.randint(len(options))]+1)

    best_value = -2
    candidate_move = None
    for x in options:
        height = np.where(dummy_board[:,x]==0)[0][-1]
        dummy_board[height,x] = active_turn
        if cccc.winner(dummy_board):
            return (1, x+1)
        (opp_value,opp_move) = alpha_beta_move(dummy_board,swap_dict[active_turn],depth-1,-best_value)
        if -opp_value > best_value:
            candidate_move = x+1
            best_value = -opp_value
        if -opp_value >= alpha:
            #print (options, x, best_value, alpha)
            break
        dummy_board[height,x] = 0

    return (best_value, candidate_move)
コード例 #2
0
def alpha_beta_move(board,
                    active_turn,
                    depth,
                    evaluation=lambda x: 0,
                    alpha=2):
    swap_dict = {1: -1, -1: 1}
    dummy_board = np.copy(board)
    dummy_board = dummy_board.reshape((6, 7))
    options = cccc.available_moves(dummy_board)
    random.shuffle(options)
    if len(options) == 1:
        dummy_board[np.where(dummy_board[:, options[0]] == 0)[0][-1],
                    options[0]] = active_turn
        if cccc.winner(dummy_board):
            return (1, options[0] + 1)
        else:
            return (0, options[0] + 1)
    if depth == 0:
        best_value = -2
        for x in options:
            height = np.where(dummy_board[:, x] == 0)[0][-1]
            dummy_board[height, x] = active_turn
            eval_board = evaluation(dummy_board * active_turn)
            if eval_board > best_value:
                best_value = eval_board
                candidate_move = x + 1
            dummy_board[height, x] = 0
        return (best_value, candidate_move)

    best_value = -2
    candidate_move = None
    for x in options:
        height = np.where(dummy_board[:, x] == 0)[0][-1]
        dummy_board[height, x] = active_turn
        if cccc.winner(dummy_board):
            return (1, x + 1)
        (opp_value,
         opp_move) = alpha_beta_move(dummy_board, swap_dict[active_turn],
                                     depth - 1, evaluation, -best_value)
        if -opp_value > best_value:
            candidate_move = x + 1
            best_value = -opp_value
        if -opp_value >= alpha:
            #print (options, x, best_value, alpha)
            break
        dummy_board[height, x] = 0

    return (best_value, candidate_move)
コード例 #3
0
def play_cccc():

    print "requesting move"
    player_index_dict = {-1: 1, 1: 0}
    player = int(request.form.get("player"))
    depths = map(int, request.form.get("depths").split(','))
    print "the depths are ", depths
    board = request.form.get("board")
    board = board.split(",")
    board = [int(x) for x in board]
    board = np.array(board).reshape((6, 7))
    print "the board is "
    print board
    types = request.form.get("types")
    types = map(lambda x: x.replace("\"", ""), types.split(","))
    evals = request.form.get("evals").split(",")
    print "the eval method is ", evals[player_index_dict[player]]
    if fc4.game_over(np.copy(board).reshape((6, 7))):
        finished = cccc.winner(board.reshape((6, 7)))
        return jsonify(finished=finished)
    else:
        finished = -2
    if evals[player_index_dict[player]] == 'nn':
        evaluation = fc4.net_value
    else:
        evaluation = lambda x: 0
    #evaluation
    print "the control methods are ", types
    #    print types, player, fc4.game_over(np.copy(board)), evals, depths[player_index_dict[player]]
    if types[player_index_dict[player]] == 'remote' and not fc4.game_over(
            np.copy(board)):
        move = fc4.alpha_beta_move(board.reshape((6, 7)),
                                   player,
                                   depth=depths[player_index_dict[player]],
                                   evaluation=evaluation)[1]
        print "the next move is ", move

        fc4.update_move(board, move, player)
        print "the board is "
        print board
        player *= -1
    board = board.reshape(42)
    print 'next move is', move
    if fc4.game_over(np.copy(board).reshape((6, 7))):
        finished = cccc.winner(board.reshape((6, 7)))
    else:
        finished = -2
    return jsonify(move=move, player=-1 * player, finished=finished)
コード例 #4
0
ファイル: app.py プロジェクト: tsierens/Deep-Learning
def play_cccc():

    print "requesting move"
    player_index_dict = {-1:1,1:0}
    player = int(request.form.get("player"))
    depths = map(int,request.form.get("depths").split(','))
    print "the depths are ", depths
    board = request.form.get("board")
    board = board.split(",")
    board = [int(x) for x in board]
    board = np.array(board).reshape((6,7))
    print "the board is "
    print board
    types = request.form.get("types")
    types = map(lambda x: x.replace("\"",""),types.split(","))
    evals = request.form.get("evals").split(",")
    print "the eval method is ",evals[player_index_dict[player]]
    if fc4.game_over(np.copy(board).reshape((6,7))):
        finished = cccc.winner(board.reshape((6,7)))
        return jsonify(finished = finished)
    else:
        finished = -2
    if evals[player_index_dict[player]] == 'nn':
        evaluation = fc4.net_value
    else:
        evaluation = lambda x: 0
    #evaluation
    print "the control methods are ", types
#    print types, player, fc4.game_over(np.copy(board)), evals, depths[player_index_dict[player]]
    if  types[player_index_dict[player]] == 'remote' and not fc4.game_over(np.copy(board)):
        move = fc4.alpha_beta_move(board.reshape((6,7)),
                                   player,
                                   depth = depths[player_index_dict[player]],
                                   evaluation = evaluation)[1]
        print "the next move is ",move

        fc4.update_move(board,move,player)
        print "the board is "
        print board
        player *= -1
    board = board.reshape(42)
    print 'next move is', move
    if fc4.game_over(np.copy(board).reshape((6,7))):
        finished = cccc.winner(board.reshape((6,7)))
    else:
        finished = -2
    return jsonify(move=move, player = -1*player, finished = finished)
コード例 #5
0
def get_max_future(future_board,value_fun):
    options = cccc.available_moves(future_board)
    dummy_board = np.copy(future_board)
    move_values = np.zeros(7)
    for move in options:
        dummy_board = np.copy(future_board)
        dummy_board[np.where(dummy_board[:,move]==0)[0][-1],move] = -1
        # dummy_board = dummy_board.reshape(1,42)
        if cccc.winner(dummy_board):
            move_values[move] = cccc.winner(dummy_board)
        else:
            reshapable = np.copy(dummy_board)
            reshapable = reshapable.reshape(1,42)
            move_values[move] = value_fun(reshapable)
    
    available_move_values = np.array([move_values[move] for move in options])
    dummy_board = np.copy(future_board)
    options_index = np.argmin(available_move_values)
    dummy_board[np.where(dummy_board[:,options[options_index]]==0)[0][-1],options[options_index]] = -1
    return np.amin(available_move_values), dummy_board
コード例 #6
0
def alpha_beta_move(board,active_turn,depth,evaluation = lambda x: 0,alpha = 2):
    swap_dict = {1:-1,-1:1}
    dummy_board = np.copy(board)
    dummy_board = dummy_board.reshape((6,7))
    options = cccc.available_moves(dummy_board)
    random.shuffle(options)
    if len(options) == 1:
        dummy_board[np.where(dummy_board[:,options[0]]==0)[0][-1],options[0]] = active_turn
        if cccc.winner(dummy_board):
            return (1,options[0]+1)
        else:
            return (0,options[0]+1)
    if depth ==0:
        best_value = -2
        for x in options:
            height = np.where(dummy_board[:,x]==0)[0][-1]
            dummy_board[height,x] = active_turn
            eval_board = evaluation(dummy_board*active_turn)
            if  eval_board > best_value:
                best_value = eval_board
                candidate_move = x + 1
            dummy_board[height,x] = 0
        return (best_value, candidate_move)

    best_value = -2
    candidate_move = None
    for x in options:
        height = np.where(dummy_board[:,x]==0)[0][-1]
        dummy_board[height,x] = active_turn
        if cccc.winner(dummy_board):
            return (1, x+1)
        (opp_value,opp_move) = alpha_beta_move(dummy_board,swap_dict[active_turn],depth-1,evaluation,-best_value)
        if -opp_value > best_value:
            candidate_move = x+1
            best_value = -opp_value
        if -opp_value >= alpha:
            #print (options, x, best_value, alpha)
            break
        dummy_board[height,x] = 0

    return (best_value, candidate_move)
コード例 #7
0
def go():
    if request.method == 'GET':
        board = app.board
        player = app.player
        print "HOWDY"
        return render_template('connect_four.html', board = board, cplayer = player, finished = -2 )
    if request.method == 'POST':
        player = int(request.form.get("player"))
        board = request.form.get("board")
        board = board.split(",")
        #print board
        board = [int(x) for x in board]
        board = np.array(board)
        #print board,player
        if game_over(np.copy(board)):
            if cccc.winner(board.reshape((6,7)))==1:
                print '1'
                return render_template('connect_four.html', board = list(board), cplayer = player, finished = 1)
            if cccc.winner(board.reshape((6,7))) ==0:
                print '0'
                return render_template('connect_four.html', board = list(board), cplayer = player, finished = 0)
            if cccc.winner(board.reshape((6,7))) == -1:
                print '-1'
                return render_template('connect_four.html', board = list(board), cplayer = player, finished = -1)
        while not game_over(board):
            if player == -1:
                _,move = alpha_beta_move(board,player,depth=2, evaluation = net_value)
                #print move
                #print game_over(board)
                board = board.reshape((6,7))
                board[np.where(board[:,move-1]==0)[0][-1],move-1] = active_turn = player
                player = -1*player
                board = board.reshape(42)
                #print board,player

            elif player == 1:
                #print board, player
                return render_template('connect_four.html', board = list(board), cplayer = player,finished=-2)
        if game_over(np.copy(board)):
            if cccc.winner(board.reshape((6,7)))==1:
                print '1'
                return render_template('connect_four.html', board = list(board), cplayer = player, finished = 1)
            if cccc.winner(board.reshape((6,7))) ==0:
                print '0'
                return render_template('connect_four.html', board = list(board), cplayer = player, finished = 0)
            if cccc.winner(board.reshape((6,7))) == -1:
                print '-1'
                return render_template('connect_four.html', board = list(board), cplayer = player, finished = -1)
コード例 #8
0
ファイル: app.py プロジェクト: tsierens/flask_games
def play_cccc():

    print "requesting move"
    player_index_dict = {-1:1,1:0}
    player = int(request.form.get("player"))
    depths = map(int,request.form.get("depths").split(','))
    print "the depths are ", depths
    board = request.form.get("board")
    board = board.split(",")
    board = [int(x) for x in board]
    board = np.array(board).reshape((6,7))
    move =0
    print "the board is "
    print board
    types = request.form.get("types")
    types = map(lambda x: x.replace("\"",""),types.split(","))
    evals = request.form.get("evals").split(",")
    print "the eval method is ",evals[player_index_dict[player]]
    try:
        print request.form.get("overcheck")
        overcheck = request.form.get("overcheck")=="true"
        
        print overcheck
        if overcheck:
            if cccc.game_over(board):
                finished = cccc.winner(board.reshape((6,7)))
            else:
                finished = -2
            winners = map(list,zip(*fc4.winning_squares(board)))
            if not winners:
                winners = [[],[]]
            print winners
            return jsonify(finished = finished, y=winners[0],x=winners[1])
    except:
        print "failed"
    if fc4.game_over(np.copy(board).reshape((6,7))):
        finished = cccc.winner(board.reshape((6,7)))
        winners = map(list,zip(*fc4.winning_squares(board)))
        if not winners:
            winners = [[],[]]
        print winners
        return jsonify(finished = finished, y=winners[0],x=winners[1])
    else:
        winners = []
        finished = -2
    if evals[player_index_dict[player]] == 'nn':
        evaluation = fc4.sym_net_value
    else:
        evaluation = lambda x: 0
    #evaluation
    print "the control methods are ", types
#    print types, player, fc4.game_over(np.copy(board)), evals, depths[player_index_dict[player]]
    if  types[player_index_dict[player]] == 'remote' and not fc4.game_over(np.copy(board)):
        move = fc4.alpha_beta_move(board.reshape((6,7)),
                                   player,
                                   depth = depths[player_index_dict[player]],
                                   evaluation = evaluation)[1]
        print "the next move is ",move

        fc4.update_move(board,move,player)
        print "the board is "
        print board
        player *= -1
    board = board.reshape(42)
#    print 'next move is', move
    if fc4.game_over(np.copy(board).reshape((6,7))):
        finished = cccc.winner(board.reshape((6,7)))
        winners = map(list,zip(*fc4.winning_squares(board)))
        if not winners:
            winners = [[],[]]
        print winners
        return jsonify(move=move, player = -1*player, finished = finished, y=winners[0],x=winners[1])
    else:
        finished = -2
        winners = []
        return jsonify(move=move, player = -1*player, finished = finished)
コード例 #9
0
def game_over(board):
    board = np.array(board).reshape((6,7))
    return cccc.winner(board) or cccc.is_full(board)
コード例 #10
0
def game_over(board):
    board = np.array(board).reshape((6, 7))
    return cccc.winner(board) or cccc.is_full(board)
コード例 #11
0
def go():
    if request.method == 'GET':
        board = app.board
        player = app.player
        print "HOWDY"
        return render_template('connect_four.html',
                               board=board,
                               cplayer=player,
                               finished=-2)
    if request.method == 'POST':
        player = int(request.form.get("player"))
        board = request.form.get("board")
        board = board.split(",")
        #print board
        board = [int(x) for x in board]
        board = np.array(board)
        #print board,player
        if game_over(np.copy(board)):
            if cccc.winner(board.reshape((6, 7))) == 1:
                print '1'
                return render_template('connect_four.html',
                                       board=list(board),
                                       cplayer=player,
                                       finished=1)
            if cccc.winner(board.reshape((6, 7))) == 0:
                print '0'
                return render_template('connect_four.html',
                                       board=list(board),
                                       cplayer=player,
                                       finished=0)
            if cccc.winner(board.reshape((6, 7))) == -1:
                print '-1'
                return render_template('connect_four.html',
                                       board=list(board),
                                       cplayer=player,
                                       finished=-1)
        while not game_over(board):
            if player == -1:
                _, move = alpha_beta_move(board,
                                          player,
                                          depth=2,
                                          evaluation=net_value)
                #print move
                #print game_over(board)
                board = board.reshape((6, 7))
                board[np.where(board[:, move - 1] == 0)[0][-1],
                      move - 1] = active_turn = player
                player = -1 * player
                board = board.reshape(42)
                #print board,player

            elif player == 1:
                #print board, player
                return render_template('connect_four.html',
                                       board=list(board),
                                       cplayer=player,
                                       finished=-2)
        if game_over(np.copy(board)):
            if cccc.winner(board.reshape((6, 7))) == 1:
                print '1'
                return render_template('connect_four.html',
                                       board=list(board),
                                       cplayer=player,
                                       finished=1)
            if cccc.winner(board.reshape((6, 7))) == 0:
                print '0'
                return render_template('connect_four.html',
                                       board=list(board),
                                       cplayer=player,
                                       finished=0)
            if cccc.winner(board.reshape((6, 7))) == -1:
                print '-1'
                return render_template('connect_four.html',
                                       board=list(board),
                                       cplayer=player,
                                       finished=-1)
コード例 #12
0
def alpha_beta_move(board, turn, depth = 0, alpha = (-inf,-inf), beta = (inf,inf), evaluation = lambda x: 0):
    dummy_board = np.copy(board) # we don't want to change the board state

    swap_player = {1:-1,-1:1} # So we can change whose turn
    options = cccc.available_moves(board) # get legal moves
    random.shuffle(options) # should inherit move order instead of randomizing


#     if len(options) == 1:
#         update_move(board,options[0])
#         if cccc.winner(dummy_board):
#             return (inf,options[0])
#         else:
#             return (0,options[0])   
    
    best_value = (-inf,-inf)
    
    if not options:
        print board, cccc.game_over(board)
        print 'oops, no available moves'
    cand_move = options[0]
    if depth == 0: 
        for x in options:
            update_move(dummy_board,x,turn)
            op_value = (evaluation(dummy_board*swap_player[turn]) , depth)

            if tuple(-1 * el for el in op_value) > best_value:
                cand_move = x
                best_value = tuple(-1 * el for el in op_value)
                alpha = max(alpha, best_value)
    #        print depth,-op_value, best_value, cand_move,alpha,beta
            if alpha >= beta:
    #                print 'pruned'
                break   #alpha-beta cutoff
            unupdate_move(dummy_board,x)
    else:
    
    
    
        for x in options:

    #        dummy_board = np.copy(board)
    #        height= np.where(board[:,x]==0)[0][-1] #connect four only
    #        dummy_board[height, x] = turn
            update_move(dummy_board,x,turn)
        
            if cccc.winner(dummy_board): #should check over and tied too
                return((inf,depth), x)
            
            if cccc.is_full(dummy_board): #This assumes you can't lose on your turn
                return((0,depth) , x)
            
            op_value,_ = alpha_beta_move( dummy_board,
                                            swap_player[turn],
                                            depth-1,
                                            alpha = tuple(-1 * el for el in beta),
                                            beta = tuple(-1 * el for el in alpha),
                                            evaluation = evaluation)

            if tuple(-1 * el for el in op_value) > best_value:
                cand_move = x
                best_value = tuple(-1 * el for el in op_value)
                alpha = max(alpha, best_value)
    #        print depth,-op_value, best_value, cand_move,alpha,beta
            if alpha >= beta:
    #                print 'pruned'
                break   #alpha-beta cutoff
            unupdate_move(dummy_board,x)
    #        dummy_board[height, x] = 0
    return (best_value, cand_move)
コード例 #13
0
def game_over(board):
    return cccc.winner(board) or cccc.is_full(board)
コード例 #14
0
    game_length = len(result_O.log)
    input_list = [-1*board_list[2*i+1] for i in range(game_length/2)]
    output_list = [-1*board_list[2*i+2] for i in range(game_length/2)]
    move_list = [result_O.log[2*i+1] for i in range(game_length/2)]
for epoch in range(train_duration):
    
    t1 = time.clock()
     
    if len(input_history) > minimum_data:
        target_history = np.zeros(len(output_history))
        print 'Creating Targets for {} data points'.format(len(output_history))
        print '\n'
        t3 = time.clock()
        for i,item in enumerate(output_history):
            output_state = np.copy(output_history[i])
            if cccc.winner(output_state) or cccc.is_full(output_state):
                target_history[i] = cccc.winner(output_state)
            else:
            #minus because the future term is in terms of the valuation for the player, and we need a target for the 
            #opponent
            #    targets[i] = (1-future_discount) * reward_state + future_discount * get_max_future(
            #output_state,value_fun)
            #targets = np.array(targets).reshape(BATCH_SIZE,1)

                #temporal difference method
                target_history[i]= 0
                current_state = np.copy(output_state)

                depth = 0
                player = 1