console = Console() usage = "You shouldn't be running this file." os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' console.setVerbosity(3) # only error, success, log script = 'predict.py' dataset_filename = './neuralnet/corpus/carnegie_mellon.csv' maxgpa = 5.0 maxtest = 2400 dataset_filename = str(dataset_filename) maxgpa = float(maxgpa) maxtest = int(maxtest) if dataset_filename[-4:] != ".csv": console.error("Filetype not recognized as CSV.") print(usage) exit(0) # Data sets DATA_TRAINING = dataset_filename DATA_TEST = dataset_filename ''' We are expecting features that are floats (gpa, sat, act) and outcomes that are integers (0 for reject, 1 for accept) ''' # Load datasets using tf contrib libraries training_set = tf.contrib.learn.datasets.base.load_csv_without_header( filename=DATA_TRAINING, target_dtype=np.int, features_dtype=np.float) test_set = tf.contrib.learn.datasets.base.load_csv_without_header( filename=DATA_TEST, target_dtype=np.int, features_dtype=np.float) ##
with open('jobs.json') as f: job_data = json.load(f) console.info("Crawling %d career pages." % len(job_data)) i = 0 for job_entry in job_data: try: url = job_entry['link'] page = requests.get(url) tree = html.fromstring(page.content) links = tree.xpath('//a') job_postings = [] for link in links: job_title = link.text_content().strip().lstrip() if 'intern' in job_title: # only test if intern position res = requests.post( 'http://127.0.0.1:8000/predict', json={'title': job_title}) prediction = res.text.strip().lstrip() if prediction in ['IT/Software Development', 'Engineering']: job_postings.append(job_title) job_entry['positions'] = job_postings except Exception as e: console.error(e) i = i + 1 if i % 20 == 0: console.log("Processed %d pages." % i) console.success("Finished crawling.") with open('jobs.json', 'w') as f: json.dump(job_data, f) console.success("Dumped data.")
import time, traceback from streaming_event_compliance.objects.logging.server_logging import ServerLogging from streaming_event_compliance.objects.exceptions.exception import ThreadException, ReadFileException from console_logging.console import Console import sys # resource.setrlimit(resource.RLIMIT_NOFILE, (2000, -1)) console = Console() console.setVerbosity(5) if __name__ == '__main__': func_name = sys._getframe().f_code.co_name try: ServerLogging().log_info(func_name, "Created all db tables") db.create_all() except Exception as ec: console.error('Error: Database connection!' + str(ec.__class__) + traceback.format_exc()) ServerLogging().log_error(func_name, "Database connection error!") exit(1) from streaming_event_compliance.objects.variable.globalvar import gVars from streaming_event_compliance.services import setup from streaming_event_compliance.services.build_automata import build_automata from streaming_event_compliance.database import dbtools dbtools.empty_tables() setup.init_automata() if gVars.auto_status == 0: start = time.clock() console.secure("Start time: ", start) try: ServerLogging().log_info(func_name, "Building automata...")
###################################### #### Setup and Run Scheduled Jobs #### ###################################### """ msg = Figlet(font='slant') print(msg.renderText('JIRA Workflow')) try: jira = jira_session(get_user(), get_pwd()) # Start a new JIRA Session jira.async_do(options['async_workers']) except JIRAError as error: console.error(Fore.LIGHTRED_EX + "An error occurred while logging into JIRA: \n" + error.status_code + "\n" + error.response ) finally: # Run scheduled jobs every Tuesday and Thursday at 7AM schedule.every().monday.at("06:50").do(pre_run_jobs) schedule.every().monday.at("07:00").do(scheduled_jobs) schedule.every().friday.at("06:50").do(pre_run_jobs) schedule.every().friday.at("07:00").do(scheduled_jobs) # Enable this if doing testing and or development # schedule.every(1).minutes.do(pre_run_jobs) # schedule.every(2).minutes.do(scheduled_jobs) while True:
import numpy as np import os import sys from console_logging.console import Console from sys import argv usage = "\nUsage:\npython neuralnet/main.py path/to/dataset.csv path/to/crossvalidation_dataset.csv #MAX_GPA #MAX_TEST_SCORE\n\nExample:\tpython main.py harvard.csv 6.0 2400\n\nThe dataset should have one column of GPA and one column of applicable test scores, no headers." console = Console() console.setVerbosity(3) # only logs success and error os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' try: script, dataset_filename, test_filename, maxgpa, maxtest = argv except: console.error(str(sys.exc_info()[0])) print(usage) exit(0) dataset_filename = str(dataset_filename) maxgpa = float(maxgpa) maxtest = int(maxtest) if dataset_filename[-4:] != ".csv": console.error("Filetype not recognized as CSV.") print(usage) exit(0) # Data sets DATA_TRAINING = dataset_filename DATA_TEST = test_filename