def get_sample_lists(path): t_images = load_dataset_paths(path, file_type='jpg') const.dprint('Loading categories...\t') training_list = [] training_labels = [] label_ids = [] for category in list(t_images): if (const.USE_FULL_DATASET or (category in const.DATASET_CATEGORIES)) and (category != 'dataset_count'): training_list.extend([os.path.join(path, category, i) for i in training_images[category][0:const.NUMBER_OF_TRAINING_IMAGES]]) training_labels.extend([len(label_ids)]*const.NUMBER_OF_TRAINING_IMAGES) label_ids.append(category) const.dprint('Done.\n') return (training_list, training_labels, label_ids)
def get_sample_lists(path): t_images = load_dataset_paths(path, file_type='jpg') const.dprint('Loading categories...\t') training_list = [] training_labels = [] label_ids = [] for category in list(t_images): if (const.USE_FULL_DATASET or (category in const.DATASET_CATEGORIES)) and (category != 'dataset_count'): training_list.extend([ os.path.join(path, category, i) for i in training_images[category][0:const.NUMBER_OF_TRAINING_IMAGES] ]) training_labels.extend([len(label_ids)] * const.NUMBER_OF_TRAINING_IMAGES) label_ids.append(category) const.dprint('Done.\n') return (training_list, training_labels, label_ids)
for ii in training_images[category]: p = os.path.join(path, category, ii) p_data = os.path.join(data_path, category, ii +'.mat') #try: mat = image_lib.convert_to_matrix(p) #except: # print(p) # print(category) # input('pause') with open(p_data, 'w') as f: for aa in range(0, len(mat)): for bb in range(0, len(mat[aa])): f.write("{0}\n".format(mat[aa][bb])) count += 1 console_lib.update_progress_bar(count/total_count, 'Resizing ' + category + ' ' + ii + ' ') def create_neural_network(n_inputs, n_hidden, n_outputs, activation_function, learning_rate): return neural_network.neural_network(n_inputs, n_hidden, n_outputs, activation_function, learning_rate) def run_training(training_list, training_labels, neu_net): for ii in range(0, len(training_list)): matrix = image_lib.convert_to_matrix(training_list[ii]) neu_net.add_sample(matrix, const.RESIZE_IMAGE_DIMENSIONS, True, correct_label=training_labels[ii]) if const.PERFORM_PREPROCESSING: preprocess_dataset(const.DATASET_PATH, resize_images=const.RESIZE_IMAGES, resize_image_dimensions=const.RESIZE_IMAGE_DIMENSIONS, store_data=const.CREATE_DATA_FILES, data_path=const.DATA_FILE_LOCATIONS) const.dprint('Script Finished.\n')
f.write("{0}\n".format(mat[aa][bb])) count += 1 console_lib.update_progress_bar( count / total_count, 'Resizing ' + category + ' ' + ii + ' ') def create_neural_network(n_inputs, n_hidden, n_outputs, activation_function, learning_rate): return neural_network.neural_network(n_inputs, n_hidden, n_outputs, activation_function, learning_rate) def run_training(training_list, training_labels, neu_net): for ii in range(0, len(training_list)): matrix = image_lib.convert_to_matrix(training_list[ii]) neu_net.add_sample(matrix, const.RESIZE_IMAGE_DIMENSIONS, True, correct_label=training_labels[ii]) if const.PERFORM_PREPROCESSING: preprocess_dataset(const.DATASET_PATH, resize_images=const.RESIZE_IMAGES, resize_image_dimensions=const.RESIZE_IMAGE_DIMENSIONS, store_data=const.CREATE_DATA_FILES, data_path=const.DATA_FILE_LOCATIONS) const.dprint('Script Finished.\n')