コード例 #1
0
def challenge(record, alarm_type):
    """Evaluates the presence of a given alarm in a given record"""
    assert alarm_type in (ASYST, BRAD, TACH, VFLUT,
                          VTACH), ('Unknown alarm type {0}'.format(alarm_type))
    annots = MIT.read_annotations(INTERP_DIR + str(record) + '.igqrs')
    rec = None
    if alarm_type == VTACH:
        rec = MIT.load_MIT_record(DB_DIR + str(record))
        rec.leads = [VALID_LEAD_NAMES[l] for l in rec.leads]
    return EVAL_ALARM_F[alarm_type](annots, rec)
コード例 #2
0
                     metavar='ann',
                     required=True,
                     help=('Annotations resulting from the abductive '
                           'interpretation of the ECG signal'))
 parser.add_argument('-c',
                     metavar='cluster',
                     required=True,
                     help=('Extension of the file containing the clustering'
                           ' information.'))
 parser.add_argument('-o',
                     metavar='oann',
                     default='cls',
                     help=('Save annotations with classified QRS complexes'
                           ' as annotator oann (default: cls)'))
 args = parser.parse_args()
 rec = MIT.load_MIT_record(args.r)
 set_sampling_freq(rec.frequency)
 print('Classifying record {0}'.format(args.r))
 #Reconstruction of the abductive interpretation
 annots = MIT.read_annotations('{0}.{1}'.format(args.r, args.a))
 interp = interp2annots.ann2interp(rec, annots)
 #Cluster information
 clusters = load_clustering(args.r, args.c, interp.observations)
 #QRS feature extraction
 features = get_features(interp)
 #Cluster feature extraction
 for c in clusters:
     clusters[c] = Cluster(clusters[c],
                           get_cluster_features(clusters[c], features))
 #Key function to compare clusters: First, we check clusters with more than
 #30 beats; then, the clusters with more REGULAR or AFIB beats, and finally
コード例 #3
0
#DB = '/home/tomas/Escritorio/afdb/'
#DB = '/tmp/mit/'
ANN = '.iqrs'
#ANN = '.ibatr'
OANN = '.rhy'

RECORDS = [l.strip() for l in open(DB + 'RECORDS')]

for rec in RECORDS:
    if os.path.isfile(DB+rec+OANN):
        print('Annotator "{0}" already exists. Skipping record {1}'.format(
                                                                   OANN, rec))
        continue
    print('Converting record {0}'.format(rec))
    anns = MIT.read_annotations(DB+rec+ANN)
    record = MIT.load_MIT_record(DB+rec)
    assert record.frequency == SAMPLING_FREQ
    record.leads = [VALID_LEAD_NAMES[l] for l in record.leads]
    interp = i2a.ann2interp(record, anns)
    afibs = list(interp.get_observations(o.Atrial_Fibrillation))
    i = 0
    while i < len(afibs):
        print('{0}/{1}'.format(i,len(afibs)))
        afib = afibs[i]
        beats = list(interp.get_observations(o.QRS, filt=lambda q, af=afib:
                                  af.earlystart <= q.time.start <= af.lateend))
        rpks = np.array([qrs.time.start for qrs in beats])
        #We obtain the shape representing the AFIB morphology as the qrs
        #matching the shape with more other qrss within the rhythm.
        ctr = collections.Counter()
        for qrs in beats: