コード例 #1
0
 def setUp(self):
     normalizer = in3120.BrainDeadNormalizer()
     tokenizer = in3120.BrainDeadTokenizer()
     corpus = in3120.InMemoryCorpus()
     corpus.add_document(
         in3120.InMemoryDocument(0, {
             "title": "the foo",
             "static_quality_score": 0.9
         }))
     corpus.add_document(
         in3120.InMemoryDocument(1, {
             "title": "the foo",
             "static_quality_score": 0.2
         }))
     corpus.add_document(
         in3120.InMemoryDocument(2, {
             "title": "the foo foo",
             "static_quality_score": 0.2
         }))
     corpus.add_document(in3120.InMemoryDocument(3, {"title": "the bar"}))
     corpus.add_document(
         in3120.InMemoryDocument(4, {"title": "the bar bar"}))
     corpus.add_document(in3120.InMemoryDocument(5, {"title": "the baz"}))
     corpus.add_document(in3120.InMemoryDocument(6, {"title": "the baz"}))
     corpus.add_document(
         in3120.InMemoryDocument(7, {"title": "the baz baz"}))
     index = in3120.InMemoryInvertedIndex(corpus, ["title"], normalizer,
                                          tokenizer)
     self.__ranker = in3120.BetterRanker(corpus, index)
コード例 #2
0
def repl_a():
    print("Building inverted index from Cranfield corpus...")
    normalizer = in3120.BrainDeadNormalizer()
    tokenizer = in3120.BrainDeadTokenizer()
    corpus = in3120.InMemoryCorpus(data_path("cran.xml"))
    index = in3120.InMemoryInvertedIndex(corpus, ["body"], normalizer, tokenizer)
    print("Enter one or more index terms and inspect their posting lists.")
    simple_repl("terms", lambda ts: {t: list(index.get_postings_iterator(t)) for t in index.get_terms(ts)})
コード例 #3
0
def repl_b_2():
    print("Building trie from MeSH corpus...")
    normalizer = in3120.BrainDeadNormalizer()
    tokenizer = in3120.BrainDeadTokenizer()
    corpus = in3120.InMemoryCorpus(data_path("mesh.txt"))
    dictionary = in3120.Trie()
    dictionary.add((normalizer.normalize(normalizer.canonicalize(d["body"])) for d in corpus), tokenizer)
    engine = in3120.StringFinder(dictionary, tokenizer)
    print("Enter some text and locate words and phrases that are MeSH terms.")
    simple_repl("text", lambda t: list(engine.scan(normalizer.normalize(normalizer.canonicalize(t)))))
コード例 #4
0
def repl_e():
    print("Initializing naive Bayes classifier from news corpora...")
    normalizer = in3120.BrainDeadNormalizer()
    tokenizer = in3120.BrainDeadTokenizer()
    languages = ["en", "no", "da", "de"]
    training_set = {language: in3120.InMemoryCorpus(data_path(f"{language}.txt")) for language in languages}
    classifier = in3120.NaiveBayesClassifier(training_set, ["body"], normalizer, tokenizer)
    print(f"Enter some text and classify it into {languages}.")
    print(f"Returned scores are log-probabilities.")
    simple_repl("text", lambda t: list(classifier.classify(t)))
コード例 #5
0
def repl_b_1():
    print("Building suffix array from Cranfield corpus...")
    normalizer = in3120.BrainDeadNormalizer()
    tokenizer = in3120.BrainDeadTokenizer()
    corpus = in3120.InMemoryCorpus(data_path("cran.xml"))
    engine = in3120.SuffixArray(corpus, ["body"], normalizer, tokenizer)
    options = {"debug": False, "hit_count": 5}
    print("Enter a prefix phrase query and find matching documents.")
    print(f"Lookup options are {options}.")
    print("Returned scores are occurrence counts.")
    simple_repl("query", lambda q: list(engine.evaluate(q, options)))
コード例 #6
0
 def test_mesh_corpus(self):
     normalizer = in3120.BrainDeadNormalizer()
     tokenizer = in3120.BrainDeadTokenizer()
     corpus = in3120.InMemoryCorpus("../data/mesh.txt")
     index = in3120.InMemoryInvertedIndex(corpus, ["body"], normalizer,
                                          tokenizer)
     self.__process_query_with_two_terms(corpus, index, "HIV  pROtein",
                                         self.__merger.intersection,
                                         [11316, 11319, 11320, 11321])
     self.__process_query_with_two_terms(
         corpus, index, "water Toxic", self.__merger.union,
         [3078, 8138, 8635, 9379, 14472, 18572, 23234, 23985] +
         [i for i in range(25265, 25282)])
コード例 #7
0
def repl_d_2():
    print("Indexing English news corpus...")
    normalizer = in3120.BrainDeadNormalizer()
    tokenizer = in3120.BrainDeadTokenizer()
    corpus = in3120.InMemoryCorpus(data_path("en.txt"))
    index = in3120.InMemoryInvertedIndex(corpus, ["body"], normalizer, tokenizer)
    ranker = in3120.BetterRanker(corpus, index)
    engine = in3120.SimpleSearchEngine(corpus, index)
    options = {"debug": False, "hit_count": 5, "match_threshold": 0.5}
    print("Enter a query and find matching documents.")
    print(f"Lookup options are {options}.")
    print(f"Tokenizer is {tokenizer.__class__.__name__}.")
    print(f"Ranker is {ranker.__class__.__name__}.")
    simple_repl("query", lambda q: list(engine.evaluate(q, options, ranker)))
コード例 #8
0
 def setUp(self):
     self.__normalizer = in3120.BrainDeadNormalizer()
     self.__tokenizer = in3120.BrainDeadTokenizer()
コード例 #9
0
 def setUp(self):
     self.__tokenizer = in3120.ShingleGenerator(3)
     self.__normalizer = in3120.BrainDeadNormalizer()