コード例 #1
0
    def test_masked_weights(self):
        v12 = spn.IndicatorLeaf(num_vars=2, num_vals=4)
        v34 = spn.RawLeaf(num_vars=2)
        v5 = spn.RawLeaf(num_vars=1)
        s = spn.SumsLayer((v12, [0, 5]),
                          v34, (v12, [3]),
                          v5, (v12, [0, 5]),
                          v34, (v12, [3]),
                          v5,
                          num_or_size_sums=[3, 1, 3, 4, 1])
        s.generate_weights(
            initializer=tf.initializers.random_uniform(0.0, 1.0))
        with self.test_session() as sess:
            sess.run(s.weights.node.initialize())
            weights = sess.run(s.weights.node.variable)

        shape = [5, 4]
        self.assertEqual(shape, s.weights.node.variable.shape.as_list())
        [
            self.assertEqual(weights[row, col], 0.0)
            for row, col in [(0, -1), (1, 1), (1,
                                               2), (1,
                                                    3), (2,
                                                         -1), (4,
                                                               1), (4,
                                                                    2), (4, 3)]
        ]
        self.assertAllClose(np.sum(weights, axis=1), np.ones(5))
コード例 #2
0
 def sums_layer_and_test(inputs, num_or_size_sums, name, ivs=False):
     """ Create a sums layer, generate its correct scope and test """
     sums_layer = spn.SumsLayer(*inputs, num_or_size_sums=num_or_size_sums, name=name)
     if ivs:
         sums_layer.generate_ivs()
     generate_scopes_from_inputs(sums_layer, inputs, num_or_size_sums, ivs=ivs)
     self.assertListEqual(sums_layer.get_scope(), scopes_per_node[sums_layer])
     return sums_layer
コード例 #3
0
 def build_sumslayer_common(self, feed_dict, input_tuples, ivs, sum_sizes, weights,
                            root_weights):
     sumslayer = spn.SumsLayer(*input_tuples, num_or_size_sums=sum_sizes)
     if ivs:
         ivs_nodes = [sumslayer.generate_ivs()]
         feed_dict[ivs_nodes[0]] = np.stack(ivs, axis=1)
     else:
         ivs_nodes = []
     mask = sumslayer._build_mask()
     weights_padded = np.zeros(mask.size)
     weights_padded[mask.ravel()] = weights
     weight_node = sumslayer.generate_weights(
         initializer=tf.initializers.constant(weights_padded))
     # Connect a single sum to group outcomes
     root = spn.SumsLayer(sumslayer, num_or_size_sums=1)
     root.generate_weights(initializer=tf.initializers.constant(root_weights))
     init = spn.initialize_weights(root)
     return init, ivs_nodes, root, weight_node
コード例 #4
0
    def sums_layer(inputs,
                   sum_indices,
                   repetitions,
                   inf_type,
                   log=False,
                   ivs=None):
        """ Creates the graph using a SumsLayer node """
        repeated_inputs = []
        repeated_sum_sizes = []
        for ind in sum_indices:
            repeated_inputs.extend([(inputs, ind) for _ in range(repetitions)])
            repeated_sum_sizes.extend([len(ind) for _ in range(repetitions)])

        sums_layer = spn.SumsLayer(*repeated_inputs,
                                   n_sums_or_sizes=repeated_sum_sizes)
        sums_layer.generate_weights()
        if ivs:
            sums_layer.set_ivs(*ivs)

        root, value_op = Ops._build_root_and_value(inf_type, log, [sums_layer])
        return spn.initialize_weights(root), value_op
コード例 #5
0
    def _build_op(self, inputs, placeholders, conf):
        # TODO make sure the ivs are correct
        sum_indices, weights, ivs = inputs.indices, inputs.weights, None
        log, inf_type = conf.log, conf.inf_type
        repeated_inputs = []
        repeated_sum_sizes = []
        offset = 0
        for ind in sum_indices:
            # Indices are given by looking at the sizes of the sums
            size = len(ind)
            repeated_inputs.extend([(placeholders[0], ind)
                                    for _ in range(inputs.num_parallel)])
            repeated_sum_sizes.extend(
                [size for _ in range(inputs.num_parallel)])
            offset += size

        # Globally configure to add up the sums before passing on the values to children
        spn.conf.sumslayer_count_sum_strategy = self.sum_count_strategy
        sums_layer = spn.SumsLayer(*repeated_inputs,
                                   num_or_size_sums=repeated_sum_sizes)
        weight_node = self._generate_weights(sums_layer, weights)
        if ivs:
            sums_layer.set_ivs(*ivs)
        # Connect a single sum to group outcomes
        root = spn.Sum(sums_layer)

        self._generate_weights(root)
        # Then build MPE path Ops
        mpe_path_gen = spn.MPEPath(value_inference_type=inf_type, log=log)
        mpe_path_gen.get_mpe_path(root)
        path_op = [
            tf.tuple([
                mpe_path_gen.counts[weight_node],
                mpe_path_gen.counts[placeholders[0]]
            ])[0]
        ]

        return path_op, self._initialize_from(root)
コード例 #6
0
    def test_compute_valid(self):
        """Calculating validity of Sums"""
        # Without IndicatorLeaf
        v12 = spn.IndicatorLeaf(num_vars=2, num_vals=4)
        v34 = spn.RawLeaf(num_vars=2)
        s1 = spn.SumsLayer((v12, [0, 1, 2, 3]), (v12, [0, 1, 2, 3]),
                           (v12, [0, 1, 2, 3]),
                           num_or_size_sums=3)
        self.assertTrue(s1.is_valid())

        s2 = spn.SumsLayer((v12, [0, 1, 2, 4]), name="S2")
        s2b = spn.SumsLayer((v12, [0, 1, 2, 4]),
                            num_or_size_sums=[3, 1],
                            name="S2b")
        self.assertTrue(s2b.is_valid())
        self.assertFalse(s2.is_valid())

        s3 = spn.SumsLayer((v12, [0, 1, 2, 3]), (v34, 0), (v12, [0, 1, 2, 3]),
                           (v34, 0),
                           num_or_size_sums=2)
        s3b = spn.SumsLayer((v12, [0, 1, 2, 3]), (v34, 0), (v12, [0, 1, 2, 3]),
                            (v34, 0),
                            num_or_size_sums=[4, 1, 4, 1])
        s3c = spn.SumsLayer((v12, [0, 1, 2, 3]), (v34, 0), (v12, [0, 1, 2, 3]),
                            (v34, 0),
                            num_or_size_sums=[4, 1, 5])
        self.assertFalse(s3.is_valid())
        self.assertTrue(s3b.is_valid())
        self.assertFalse(s3c.is_valid())

        p1 = spn.Product((v12, [0, 5]), (v34, 0))
        p2 = spn.Product((v12, [1, 6]), (v34, 0))
        p3 = spn.Product((v12, [1, 6]), (v34, 1))

        s4 = spn.SumsLayer(p1, p2, p1, p2, num_or_size_sums=2)
        s5 = spn.SumsLayer(p1, p3, p1, p3, p1, p3, num_or_size_sums=3)
        s6 = spn.SumsLayer(p1, p2, p3, num_or_size_sums=[2, 1])
        s7 = spn.SumsLayer(p1, p2, p3, num_or_size_sums=[1, 2])
        s8 = spn.SumsLayer(p1, p2, p3, p2, p1, num_or_size_sums=[2, 1, 2])
        self.assertTrue(s4.is_valid())
        self.assertFalse(s5.is_valid())  # p1 and p3 different scopes
        self.assertTrue(s6.is_valid())
        self.assertFalse(s7.is_valid())  # p2 and p3 different scopes
        self.assertTrue(s8.is_valid())
        # With IVS
        s6 = spn.SumsLayer(p1, p2, p1, p2, p1, p2, num_or_size_sums=3)
        s6.generate_latent_indicators()
        self.assertTrue(s6.is_valid())

        s7 = spn.SumsLayer(p1, p2, num_or_size_sums=1)
        s7.set_latent_indicators(spn.RawLeaf(num_vars=2))
        self.assertFalse(s7.is_valid())

        s7 = spn.SumsLayer(p1, p2, p3, num_or_size_sums=3)
        s7.set_latent_indicators(spn.RawLeaf(num_vars=3))
        self.assertTrue(s7.is_valid())

        s7 = spn.SumsLayer(p1, p2, p3, num_or_size_sums=[2, 1])
        s7.set_latent_indicators(spn.RawLeaf(num_vars=3))
        self.assertFalse(s7.is_valid())

        s8 = spn.SumsLayer(p1, p2, p1, p2, num_or_size_sums=2)
        s8.set_latent_indicators(spn.IndicatorLeaf(num_vars=3, num_vals=2))
        with self.assertRaises(spn.StructureError):
            s8.is_valid()

        s9 = spn.SumsLayer(p1, p2, p1, p2, num_or_size_sums=[1, 3])
        s9.set_latent_indicators(spn.RawLeaf(num_vars=2))
        with self.assertRaises(spn.StructureError):
            s9.is_valid()

        s9 = spn.SumsLayer(p1, p2, p1, p2, num_or_size_sums=[1, 3])
        s9.set_latent_indicators(spn.RawLeaf(num_vars=3))
        with self.assertRaises(spn.StructureError):
            s9.is_valid()

        s9 = spn.SumsLayer(p1, p2, p1, p2, num_or_size_sums=2)
        s9.set_latent_indicators(spn.IndicatorLeaf(num_vars=1, num_vals=4))
        self.assertTrue(s9.is_valid())

        s9 = spn.SumsLayer(p1, p2, p1, p2, num_or_size_sums=[1, 3])
        s9.set_latent_indicators(spn.IndicatorLeaf(num_vars=1, num_vals=4))
        self.assertTrue(s9.is_valid())

        s9 = spn.SumsLayer(p1, p2, p1, p2, num_or_size_sums=[1, 3])
        s9.set_latent_indicators(spn.IndicatorLeaf(num_vars=2, num_vals=2))
        self.assertFalse(s9.is_valid())

        s9 = spn.SumsLayer(p1, p2, p1, p2, num_or_size_sums=2)
        s9.set_latent_indicators(spn.IndicatorLeaf(num_vars=2, num_vals=2))
        self.assertTrue(s9.is_valid())

        s9 = spn.SumsLayer(p1, p2, p1, p2, num_or_size_sums=[1, 2, 1])
        s9.set_latent_indicators(spn.IndicatorLeaf(num_vars=2, num_vals=2))
        self.assertFalse(s9.is_valid())

        s10 = spn.SumsLayer(p1, p2, p1, p2, num_or_size_sums=2)
        s10.set_latent_indicators((v12, [0, 3, 5, 7]))
        self.assertTrue(s10.is_valid())

        s10 = spn.SumsLayer(p1, p2, p1, p2, num_or_size_sums=[1, 2, 1])
        s10.set_latent_indicators((v12, [0, 3, 5, 7]))
        self.assertFalse(s10.is_valid())
コード例 #7
0
    def test_generate_spn(self, num_decomps, num_subsets, num_mixtures,
                          num_input_mixtures, input_dims, input_dist, balanced,
                          node_type, log_weights):
        """A generic test for DenseSPNGenerator."""

        if input_dist == spn.DenseSPNGenerator.InputDist.RAW \
            and num_input_mixtures != 1:
            # Redundant test case, so just return
            return

        # Input parameters
        num_inputs = input_dims[0]
        num_vars = input_dims[1]
        num_vals = 2

        printc("\n- num_inputs: %s" % num_inputs)
        printc("- num_vars: %s" % num_vars)
        printc("- num_vals: %s" % num_vals)
        printc("- num_decomps: %s" % num_decomps)
        printc("- num_subsets: %s" % num_subsets)
        printc("- num_mixtures: %s" % num_mixtures)
        printc("- input_dist: %s" %
               ("MIXTURE" if input_dist
                == spn.DenseSPNGenerator.InputDist.MIXTURE else "RAW"))
        printc("- balanced: %s" % balanced)
        printc("- num_input_mixtures: %s" % num_input_mixtures)
        printc("- node_type: %s" %
               ("SINGLE" if node_type == spn.DenseSPNGenerator.NodeType.SINGLE
                else "BLOCK" if node_type
                == spn.DenseSPNGenerator.NodeType.BLOCK else "LAYER"))
        printc("- log_weights: %s" % log_weights)

        # Inputs
        inputs = [
            spn.IVs(num_vars=num_vars,
                    num_vals=num_vals,
                    name=("IVs_%d" % (i + 1))) for i in range(num_inputs)
        ]

        gen = spn.DenseSPNGenerator(num_decomps=num_decomps,
                                    num_subsets=num_subsets,
                                    num_mixtures=num_mixtures,
                                    input_dist=input_dist,
                                    balanced=balanced,
                                    num_input_mixtures=num_input_mixtures,
                                    node_type=node_type)

        # Generate Sub-SPNs
        sub_spns = [
            gen.generate(*inputs, root_name=("sub_root_%d" % (i + 1)))
            for i in range(3)
        ]

        # Generate random weights for the first sub-SPN
        with tf.name_scope("Weights"):
            spn.generate_weights(sub_spns[0],
                                 tf.initializers.random_uniform(0.0, 1.0),
                                 log=log_weights)

        # Initialize weights of the first sub-SPN
        sub_spn_init = spn.initialize_weights(sub_spns[0])

        # Testing validity of the first sub-SPN
        self.assertTrue(sub_spns[0].is_valid())

        # Generate value ops of the first sub-SPN
        sub_spn_v = sub_spns[0].get_value()
        sub_spn_v_log = sub_spns[0].get_log_value()

        # Generate path ops of the first sub-SPN
        sub_spn_mpe_path_gen = spn.MPEPath(log=False)
        sub_spn_mpe_path_gen_log = spn.MPEPath(log=True)
        sub_spn_mpe_path_gen.get_mpe_path(sub_spns[0])
        sub_spn_mpe_path_gen_log.get_mpe_path(sub_spns[0])
        sub_spn_path = [sub_spn_mpe_path_gen.counts[inp] for inp in inputs]
        sub_spn_path_log = [
            sub_spn_mpe_path_gen_log.counts[inp] for inp in inputs
        ]

        # Collect all weight nodes of the first sub-SPN
        sub_spn_weight_nodes = []

        def fun(node):
            if node.is_param:
                sub_spn_weight_nodes.append(node)

        spn.traverse_graph(sub_spns[0], fun=fun)

        # Generate an upper-SPN over sub-SPNs
        products_lower = []
        for sub_spn in sub_spns:
            products_lower.append([v.node for v in sub_spn.values])

        num_top_mixtures = [2, 1, 3]
        sums_lower = []
        for prods, num_top_mix in zip(products_lower, num_top_mixtures):
            if node_type == spn.DenseSPNGenerator.NodeType.SINGLE:
                sums_lower.append(
                    [spn.Sum(*prods) for _ in range(num_top_mix)])
            elif node_type == spn.DenseSPNGenerator.NodeType.BLOCK:
                sums_lower.append([spn.ParSums(*prods, num_sums=num_top_mix)])
            else:
                sums_lower.append([
                    spn.SumsLayer(*prods * num_top_mix,
                                  num_or_size_sums=num_top_mix)
                ])

        # Generate upper-SPN
        root = gen.generate(*list(itertools.chain(*sums_lower)),
                            root_name="root")

        # Generate random weights for the SPN
        with tf.name_scope("Weights"):
            spn.generate_weights(root,
                                 tf.initializers.random_uniform(0.0, 1.0),
                                 log=log_weights)

        # Initialize weight of the SPN
        spn_init = spn.initialize_weights(root)

        # Testing validity of the SPN
        self.assertTrue(root.is_valid())

        # Generate value ops of the SPN
        spn_v = root.get_value()
        spn_v_log = root.get_log_value()

        # Generate path ops of the SPN
        spn_mpe_path_gen = spn.MPEPath(log=False)
        spn_mpe_path_gen_log = spn.MPEPath(log=True)
        spn_mpe_path_gen.get_mpe_path(root)
        spn_mpe_path_gen_log.get_mpe_path(root)
        spn_path = [spn_mpe_path_gen.counts[inp] for inp in inputs]
        spn_path_log = [spn_mpe_path_gen_log.counts[inp] for inp in inputs]

        # Collect all weight nodes in the SPN
        spn_weight_nodes = []

        def fun(node):
            if node.is_param:
                spn_weight_nodes.append(node)

        spn.traverse_graph(root, fun=fun)

        # Create a session
        with self.test_session() as sess:
            # Initializing weights
            sess.run(sub_spn_init)
            sess.run(spn_init)

            # Generate input feed
            feed = np.array(
                list(
                    itertools.product(range(num_vals),
                                      repeat=(num_inputs * num_vars))))
            batch_size = feed.shape[0]
            feed_dict = {}
            for inp, f in zip(inputs, np.split(feed, num_inputs, axis=1)):
                feed_dict[inp] = f

            # Compute all values and paths of sub-SPN
            sub_spn_out = sess.run(sub_spn_v, feed_dict=feed_dict)
            sub_spn_out_log = sess.run(tf.exp(sub_spn_v_log),
                                       feed_dict=feed_dict)
            sub_spn_out_path = sess.run(sub_spn_path, feed_dict=feed_dict)
            sub_spn_out_path_log = sess.run(sub_spn_path_log,
                                            feed_dict=feed_dict)

            # Compute all values and paths of the complete SPN
            spn_out = sess.run(spn_v, feed_dict=feed_dict)
            spn_out_log = sess.run(tf.exp(spn_v_log), feed_dict=feed_dict)
            spn_out_path = sess.run(spn_path, feed_dict=feed_dict)
            spn_out_path_log = sess.run(spn_path_log, feed_dict=feed_dict)

            # Test if partition function of the sub-SPN and of the
            # complete SPN is 1.0
            self.assertAlmostEqual(sub_spn_out.sum(), 1.0, places=6)
            self.assertAlmostEqual(sub_spn_out_log.sum(), 1.0, places=6)
            self.assertAlmostEqual(spn_out.sum(), 1.0, places=6)
            self.assertAlmostEqual(spn_out_log.sum(), 1.0, places=6)

            # Test if the sum of counts for each value of each variable
            # (6 variables, with 2 values each) = batch-size / num-vals
            self.assertEqual(
                np.sum(np.hstack(sub_spn_out_path), axis=0).tolist(),
                [batch_size // num_vals] * num_inputs * num_vars * num_vals)
            self.assertEqual(
                np.sum(np.hstack(sub_spn_out_path_log), axis=0).tolist(),
                [batch_size // num_vals] * num_inputs * num_vars * num_vals)
            self.assertEqual(
                np.sum(np.hstack(spn_out_path), axis=0).tolist(),
                [batch_size // num_vals] * num_inputs * num_vars * num_vals)
            self.assertEqual(
                np.sum(np.hstack(spn_out_path_log), axis=0).tolist(),
                [batch_size // num_vals] * num_inputs * num_vars * num_vals)