def test_traverse_graph_nostop_noparams(self): """Traversing the whole graph excluding param nodes""" counter = [0] nodes = [None] * 10 def fun(node): nodes[counter[0]] = node counter[0] += 1 # Generate graph v1 = spn.RawLeaf(num_vars=1) v2 = spn.RawLeaf(num_vars=1) v3 = spn.RawLeaf(num_vars=1) s1 = spn.Sum(v1, v1, v2) # v1 included twice s2 = spn.Sum(v1, v3) s3 = spn.Sum(v2, v3, v3) # v3 included twice s4 = spn.Sum(s1, v1) s5 = spn.Sum(s2, v3, s3) s6 = spn.Sum(s4, s2, s5, s4, s5) # s4 and s5 included twice spn.generate_weights(s6) # Traverse spn.traverse_graph(s6, fun=fun, skip_params=True) # Test self.assertEqual(counter[0], 9) self.assertIs(nodes[0], s6) self.assertIs(nodes[1], s4) self.assertIs(nodes[2], s2) self.assertIs(nodes[3], s5) self.assertIs(nodes[4], s1) self.assertIs(nodes[5], v1) self.assertIs(nodes[6], v3) self.assertIs(nodes[7], s3) self.assertIs(nodes[8], v2)
def test_traversing_on_dense(self): """Compare traversal algs on dense SPN""" def fun1(node, *args): counter[0] += 1 def fun2(node, *args): counter[0] += 1 if node.is_op: return [None] * len(node.inputs) # Generate dense graph v1 = spn.IndicatorLeaf(num_vars=3, num_vals=2, name="IndicatorLeaf1") v2 = spn.IndicatorLeaf(num_vars=3, num_vals=2, name="IndicatorLeaf2") gen = spn.DenseSPNGenerator(num_decomps=2, num_subsets=3, num_mixtures=2, input_dist=spn.DenseSPNGenerator.InputDist.MIXTURE, num_input_mixtures=None) root = gen.generate(v1, v2) spn.generate_weights(root) # Run traversal algs and count nodes counter = [0] spn.compute_graph_up_down(root, down_fun=fun2, graph_input=1) c1 = counter[0] counter = [0] spn.compute_graph_up(root, val_fun=fun1) c2 = counter[0] counter = [0] spn.traverse_graph(root, fun=fun1, skip_params=False) c3 = counter[0] # Compare self.assertEqual(c1, c3) self.assertEqual(c2, c3)
def test_traverse_graph_stop(self): """Traversing the graph until fun returns True""" counter = [0] nodes = [None] * 9 true_node_no = 4 # s5 def fun(node): nodes[counter[0]] = node counter[0] += 1 if counter[0] == true_node_no: return True # Generate graph v1 = spn.RawLeaf(num_vars=1) v2 = spn.RawLeaf(num_vars=1) v3 = spn.RawLeaf(num_vars=1) s1 = spn.Sum(v1, v1, v2) # v1 included twice s2 = spn.Sum(v1, v3) s3 = spn.Sum(v2, v3, v3) # v3 included twice s4 = spn.Sum(s1, v1) s5 = spn.Sum(s2, v3, s3) s6 = spn.Sum(s4, s2, s5, s4, s5) # s4 and s5 included twice # Traverse spn.traverse_graph(s6, fun=fun, skip_params=True) # Test self.assertEqual(counter[0], 4) self.assertIs(nodes[0], s6) self.assertIs(nodes[1], s4) self.assertIs(nodes[2], s2) self.assertIs(nodes[3], s5) self.assertIs(nodes[4], None) self.assertIs(nodes[5], None) self.assertIs(nodes[6], None) self.assertIs(nodes[7], None) self.assertIs(nodes[8], None)
def test_generate_spn(self, num_decomps, num_subsets, num_mixtures, num_input_mixtures, input_dims, input_dist, balanced, node_type, log_weights): """A generic test for DenseSPNGenerator.""" if input_dist == spn.DenseSPNGenerator.InputDist.RAW \ and num_input_mixtures != 1: # Redundant test case, so just return return # Input parameters num_inputs = input_dims[0] num_vars = input_dims[1] num_vals = 2 printc("\n- num_inputs: %s" % num_inputs) printc("- num_vars: %s" % num_vars) printc("- num_vals: %s" % num_vals) printc("- num_decomps: %s" % num_decomps) printc("- num_subsets: %s" % num_subsets) printc("- num_mixtures: %s" % num_mixtures) printc("- input_dist: %s" % ("MIXTURE" if input_dist == spn.DenseSPNGenerator.InputDist.MIXTURE else "RAW")) printc("- balanced: %s" % balanced) printc("- num_input_mixtures: %s" % num_input_mixtures) printc("- node_type: %s" % ("SINGLE" if node_type == spn.DenseSPNGenerator.NodeType.SINGLE else "BLOCK" if node_type == spn.DenseSPNGenerator.NodeType.BLOCK else "LAYER")) printc("- log_weights: %s" % log_weights) # Inputs inputs = [ spn.IVs(num_vars=num_vars, num_vals=num_vals, name=("IVs_%d" % (i + 1))) for i in range(num_inputs) ] gen = spn.DenseSPNGenerator(num_decomps=num_decomps, num_subsets=num_subsets, num_mixtures=num_mixtures, input_dist=input_dist, balanced=balanced, num_input_mixtures=num_input_mixtures, node_type=node_type) # Generate Sub-SPNs sub_spns = [ gen.generate(*inputs, root_name=("sub_root_%d" % (i + 1))) for i in range(3) ] # Generate random weights for the first sub-SPN with tf.name_scope("Weights"): spn.generate_weights(sub_spns[0], tf.initializers.random_uniform(0.0, 1.0), log=log_weights) # Initialize weights of the first sub-SPN sub_spn_init = spn.initialize_weights(sub_spns[0]) # Testing validity of the first sub-SPN self.assertTrue(sub_spns[0].is_valid()) # Generate value ops of the first sub-SPN sub_spn_v = sub_spns[0].get_value() sub_spn_v_log = sub_spns[0].get_log_value() # Generate path ops of the first sub-SPN sub_spn_mpe_path_gen = spn.MPEPath(log=False) sub_spn_mpe_path_gen_log = spn.MPEPath(log=True) sub_spn_mpe_path_gen.get_mpe_path(sub_spns[0]) sub_spn_mpe_path_gen_log.get_mpe_path(sub_spns[0]) sub_spn_path = [sub_spn_mpe_path_gen.counts[inp] for inp in inputs] sub_spn_path_log = [ sub_spn_mpe_path_gen_log.counts[inp] for inp in inputs ] # Collect all weight nodes of the first sub-SPN sub_spn_weight_nodes = [] def fun(node): if node.is_param: sub_spn_weight_nodes.append(node) spn.traverse_graph(sub_spns[0], fun=fun) # Generate an upper-SPN over sub-SPNs products_lower = [] for sub_spn in sub_spns: products_lower.append([v.node for v in sub_spn.values]) num_top_mixtures = [2, 1, 3] sums_lower = [] for prods, num_top_mix in zip(products_lower, num_top_mixtures): if node_type == spn.DenseSPNGenerator.NodeType.SINGLE: sums_lower.append( [spn.Sum(*prods) for _ in range(num_top_mix)]) elif node_type == spn.DenseSPNGenerator.NodeType.BLOCK: sums_lower.append([spn.ParSums(*prods, num_sums=num_top_mix)]) else: sums_lower.append([ spn.SumsLayer(*prods * num_top_mix, num_or_size_sums=num_top_mix) ]) # Generate upper-SPN root = gen.generate(*list(itertools.chain(*sums_lower)), root_name="root") # Generate random weights for the SPN with tf.name_scope("Weights"): spn.generate_weights(root, tf.initializers.random_uniform(0.0, 1.0), log=log_weights) # Initialize weight of the SPN spn_init = spn.initialize_weights(root) # Testing validity of the SPN self.assertTrue(root.is_valid()) # Generate value ops of the SPN spn_v = root.get_value() spn_v_log = root.get_log_value() # Generate path ops of the SPN spn_mpe_path_gen = spn.MPEPath(log=False) spn_mpe_path_gen_log = spn.MPEPath(log=True) spn_mpe_path_gen.get_mpe_path(root) spn_mpe_path_gen_log.get_mpe_path(root) spn_path = [spn_mpe_path_gen.counts[inp] for inp in inputs] spn_path_log = [spn_mpe_path_gen_log.counts[inp] for inp in inputs] # Collect all weight nodes in the SPN spn_weight_nodes = [] def fun(node): if node.is_param: spn_weight_nodes.append(node) spn.traverse_graph(root, fun=fun) # Create a session with self.test_session() as sess: # Initializing weights sess.run(sub_spn_init) sess.run(spn_init) # Generate input feed feed = np.array( list( itertools.product(range(num_vals), repeat=(num_inputs * num_vars)))) batch_size = feed.shape[0] feed_dict = {} for inp, f in zip(inputs, np.split(feed, num_inputs, axis=1)): feed_dict[inp] = f # Compute all values and paths of sub-SPN sub_spn_out = sess.run(sub_spn_v, feed_dict=feed_dict) sub_spn_out_log = sess.run(tf.exp(sub_spn_v_log), feed_dict=feed_dict) sub_spn_out_path = sess.run(sub_spn_path, feed_dict=feed_dict) sub_spn_out_path_log = sess.run(sub_spn_path_log, feed_dict=feed_dict) # Compute all values and paths of the complete SPN spn_out = sess.run(spn_v, feed_dict=feed_dict) spn_out_log = sess.run(tf.exp(spn_v_log), feed_dict=feed_dict) spn_out_path = sess.run(spn_path, feed_dict=feed_dict) spn_out_path_log = sess.run(spn_path_log, feed_dict=feed_dict) # Test if partition function of the sub-SPN and of the # complete SPN is 1.0 self.assertAlmostEqual(sub_spn_out.sum(), 1.0, places=6) self.assertAlmostEqual(sub_spn_out_log.sum(), 1.0, places=6) self.assertAlmostEqual(spn_out.sum(), 1.0, places=6) self.assertAlmostEqual(spn_out_log.sum(), 1.0, places=6) # Test if the sum of counts for each value of each variable # (6 variables, with 2 values each) = batch-size / num-vals self.assertEqual( np.sum(np.hstack(sub_spn_out_path), axis=0).tolist(), [batch_size // num_vals] * num_inputs * num_vars * num_vals) self.assertEqual( np.sum(np.hstack(sub_spn_out_path_log), axis=0).tolist(), [batch_size // num_vals] * num_inputs * num_vars * num_vals) self.assertEqual( np.sum(np.hstack(spn_out_path), axis=0).tolist(), [batch_size // num_vals] * num_inputs * num_vars * num_vals) self.assertEqual( np.sum(np.hstack(spn_out_path_log), axis=0).tolist(), [batch_size // num_vals] * num_inputs * num_vars * num_vals)