コード例 #1
0
    def test_traverse_graph_nostop_noparams(self):
        """Traversing the whole graph excluding param nodes"""
        counter = [0]
        nodes = [None] * 10

        def fun(node):
            nodes[counter[0]] = node
            counter[0] += 1

        # Generate graph
        v1 = spn.RawLeaf(num_vars=1)
        v2 = spn.RawLeaf(num_vars=1)
        v3 = spn.RawLeaf(num_vars=1)
        s1 = spn.Sum(v1, v1, v2)  # v1 included twice
        s2 = spn.Sum(v1, v3)
        s3 = spn.Sum(v2, v3, v3)  # v3 included twice
        s4 = spn.Sum(s1, v1)
        s5 = spn.Sum(s2, v3, s3)
        s6 = spn.Sum(s4, s2, s5, s4, s5)  # s4 and s5 included twice
        spn.generate_weights(s6)

        # Traverse
        spn.traverse_graph(s6, fun=fun, skip_params=True)

        # Test
        self.assertEqual(counter[0], 9)
        self.assertIs(nodes[0], s6)
        self.assertIs(nodes[1], s4)
        self.assertIs(nodes[2], s2)
        self.assertIs(nodes[3], s5)
        self.assertIs(nodes[4], s1)
        self.assertIs(nodes[5], v1)
        self.assertIs(nodes[6], v3)
        self.assertIs(nodes[7], s3)
        self.assertIs(nodes[8], v2)
コード例 #2
0
    def test_traversing_on_dense(self):
        """Compare traversal algs on dense SPN"""
        def fun1(node, *args):
            counter[0] += 1

        def fun2(node, *args):
            counter[0] += 1
            if node.is_op:
                return [None] * len(node.inputs)

        # Generate dense graph
        v1 = spn.IndicatorLeaf(num_vars=3, num_vals=2, name="IndicatorLeaf1")
        v2 = spn.IndicatorLeaf(num_vars=3, num_vals=2, name="IndicatorLeaf2")

        gen = spn.DenseSPNGenerator(num_decomps=2,
                                    num_subsets=3,
                                    num_mixtures=2,
                                    input_dist=spn.DenseSPNGenerator.InputDist.MIXTURE,
                                    num_input_mixtures=None)
        root = gen.generate(v1, v2)
        spn.generate_weights(root)

        # Run traversal algs and count nodes
        counter = [0]
        spn.compute_graph_up_down(root, down_fun=fun2, graph_input=1)
        c1 = counter[0]

        counter = [0]
        spn.compute_graph_up(root, val_fun=fun1)
        c2 = counter[0]

        counter = [0]
        spn.traverse_graph(root, fun=fun1, skip_params=False)
        c3 = counter[0]

        # Compare
        self.assertEqual(c1, c3)
        self.assertEqual(c2, c3)
コード例 #3
0
    def test_traverse_graph_stop(self):
        """Traversing the graph until fun returns True"""
        counter = [0]
        nodes = [None] * 9
        true_node_no = 4  # s5

        def fun(node):
            nodes[counter[0]] = node
            counter[0] += 1
            if counter[0] == true_node_no:
                return True

        # Generate graph
        v1 = spn.RawLeaf(num_vars=1)
        v2 = spn.RawLeaf(num_vars=1)
        v3 = spn.RawLeaf(num_vars=1)
        s1 = spn.Sum(v1, v1, v2)  # v1 included twice
        s2 = spn.Sum(v1, v3)
        s3 = spn.Sum(v2, v3, v3)  # v3 included twice
        s4 = spn.Sum(s1, v1)
        s5 = spn.Sum(s2, v3, s3)
        s6 = spn.Sum(s4, s2, s5, s4, s5)  # s4 and s5 included twice

        # Traverse
        spn.traverse_graph(s6, fun=fun, skip_params=True)

        # Test
        self.assertEqual(counter[0], 4)
        self.assertIs(nodes[0], s6)
        self.assertIs(nodes[1], s4)
        self.assertIs(nodes[2], s2)
        self.assertIs(nodes[3], s5)
        self.assertIs(nodes[4], None)
        self.assertIs(nodes[5], None)
        self.assertIs(nodes[6], None)
        self.assertIs(nodes[7], None)
        self.assertIs(nodes[8], None)
コード例 #4
0
    def test_generate_spn(self, num_decomps, num_subsets, num_mixtures,
                          num_input_mixtures, input_dims, input_dist, balanced,
                          node_type, log_weights):
        """A generic test for DenseSPNGenerator."""

        if input_dist == spn.DenseSPNGenerator.InputDist.RAW \
            and num_input_mixtures != 1:
            # Redundant test case, so just return
            return

        # Input parameters
        num_inputs = input_dims[0]
        num_vars = input_dims[1]
        num_vals = 2

        printc("\n- num_inputs: %s" % num_inputs)
        printc("- num_vars: %s" % num_vars)
        printc("- num_vals: %s" % num_vals)
        printc("- num_decomps: %s" % num_decomps)
        printc("- num_subsets: %s" % num_subsets)
        printc("- num_mixtures: %s" % num_mixtures)
        printc("- input_dist: %s" %
               ("MIXTURE" if input_dist
                == spn.DenseSPNGenerator.InputDist.MIXTURE else "RAW"))
        printc("- balanced: %s" % balanced)
        printc("- num_input_mixtures: %s" % num_input_mixtures)
        printc("- node_type: %s" %
               ("SINGLE" if node_type == spn.DenseSPNGenerator.NodeType.SINGLE
                else "BLOCK" if node_type
                == spn.DenseSPNGenerator.NodeType.BLOCK else "LAYER"))
        printc("- log_weights: %s" % log_weights)

        # Inputs
        inputs = [
            spn.IVs(num_vars=num_vars,
                    num_vals=num_vals,
                    name=("IVs_%d" % (i + 1))) for i in range(num_inputs)
        ]

        gen = spn.DenseSPNGenerator(num_decomps=num_decomps,
                                    num_subsets=num_subsets,
                                    num_mixtures=num_mixtures,
                                    input_dist=input_dist,
                                    balanced=balanced,
                                    num_input_mixtures=num_input_mixtures,
                                    node_type=node_type)

        # Generate Sub-SPNs
        sub_spns = [
            gen.generate(*inputs, root_name=("sub_root_%d" % (i + 1)))
            for i in range(3)
        ]

        # Generate random weights for the first sub-SPN
        with tf.name_scope("Weights"):
            spn.generate_weights(sub_spns[0],
                                 tf.initializers.random_uniform(0.0, 1.0),
                                 log=log_weights)

        # Initialize weights of the first sub-SPN
        sub_spn_init = spn.initialize_weights(sub_spns[0])

        # Testing validity of the first sub-SPN
        self.assertTrue(sub_spns[0].is_valid())

        # Generate value ops of the first sub-SPN
        sub_spn_v = sub_spns[0].get_value()
        sub_spn_v_log = sub_spns[0].get_log_value()

        # Generate path ops of the first sub-SPN
        sub_spn_mpe_path_gen = spn.MPEPath(log=False)
        sub_spn_mpe_path_gen_log = spn.MPEPath(log=True)
        sub_spn_mpe_path_gen.get_mpe_path(sub_spns[0])
        sub_spn_mpe_path_gen_log.get_mpe_path(sub_spns[0])
        sub_spn_path = [sub_spn_mpe_path_gen.counts[inp] for inp in inputs]
        sub_spn_path_log = [
            sub_spn_mpe_path_gen_log.counts[inp] for inp in inputs
        ]

        # Collect all weight nodes of the first sub-SPN
        sub_spn_weight_nodes = []

        def fun(node):
            if node.is_param:
                sub_spn_weight_nodes.append(node)

        spn.traverse_graph(sub_spns[0], fun=fun)

        # Generate an upper-SPN over sub-SPNs
        products_lower = []
        for sub_spn in sub_spns:
            products_lower.append([v.node for v in sub_spn.values])

        num_top_mixtures = [2, 1, 3]
        sums_lower = []
        for prods, num_top_mix in zip(products_lower, num_top_mixtures):
            if node_type == spn.DenseSPNGenerator.NodeType.SINGLE:
                sums_lower.append(
                    [spn.Sum(*prods) for _ in range(num_top_mix)])
            elif node_type == spn.DenseSPNGenerator.NodeType.BLOCK:
                sums_lower.append([spn.ParSums(*prods, num_sums=num_top_mix)])
            else:
                sums_lower.append([
                    spn.SumsLayer(*prods * num_top_mix,
                                  num_or_size_sums=num_top_mix)
                ])

        # Generate upper-SPN
        root = gen.generate(*list(itertools.chain(*sums_lower)),
                            root_name="root")

        # Generate random weights for the SPN
        with tf.name_scope("Weights"):
            spn.generate_weights(root,
                                 tf.initializers.random_uniform(0.0, 1.0),
                                 log=log_weights)

        # Initialize weight of the SPN
        spn_init = spn.initialize_weights(root)

        # Testing validity of the SPN
        self.assertTrue(root.is_valid())

        # Generate value ops of the SPN
        spn_v = root.get_value()
        spn_v_log = root.get_log_value()

        # Generate path ops of the SPN
        spn_mpe_path_gen = spn.MPEPath(log=False)
        spn_mpe_path_gen_log = spn.MPEPath(log=True)
        spn_mpe_path_gen.get_mpe_path(root)
        spn_mpe_path_gen_log.get_mpe_path(root)
        spn_path = [spn_mpe_path_gen.counts[inp] for inp in inputs]
        spn_path_log = [spn_mpe_path_gen_log.counts[inp] for inp in inputs]

        # Collect all weight nodes in the SPN
        spn_weight_nodes = []

        def fun(node):
            if node.is_param:
                spn_weight_nodes.append(node)

        spn.traverse_graph(root, fun=fun)

        # Create a session
        with self.test_session() as sess:
            # Initializing weights
            sess.run(sub_spn_init)
            sess.run(spn_init)

            # Generate input feed
            feed = np.array(
                list(
                    itertools.product(range(num_vals),
                                      repeat=(num_inputs * num_vars))))
            batch_size = feed.shape[0]
            feed_dict = {}
            for inp, f in zip(inputs, np.split(feed, num_inputs, axis=1)):
                feed_dict[inp] = f

            # Compute all values and paths of sub-SPN
            sub_spn_out = sess.run(sub_spn_v, feed_dict=feed_dict)
            sub_spn_out_log = sess.run(tf.exp(sub_spn_v_log),
                                       feed_dict=feed_dict)
            sub_spn_out_path = sess.run(sub_spn_path, feed_dict=feed_dict)
            sub_spn_out_path_log = sess.run(sub_spn_path_log,
                                            feed_dict=feed_dict)

            # Compute all values and paths of the complete SPN
            spn_out = sess.run(spn_v, feed_dict=feed_dict)
            spn_out_log = sess.run(tf.exp(spn_v_log), feed_dict=feed_dict)
            spn_out_path = sess.run(spn_path, feed_dict=feed_dict)
            spn_out_path_log = sess.run(spn_path_log, feed_dict=feed_dict)

            # Test if partition function of the sub-SPN and of the
            # complete SPN is 1.0
            self.assertAlmostEqual(sub_spn_out.sum(), 1.0, places=6)
            self.assertAlmostEqual(sub_spn_out_log.sum(), 1.0, places=6)
            self.assertAlmostEqual(spn_out.sum(), 1.0, places=6)
            self.assertAlmostEqual(spn_out_log.sum(), 1.0, places=6)

            # Test if the sum of counts for each value of each variable
            # (6 variables, with 2 values each) = batch-size / num-vals
            self.assertEqual(
                np.sum(np.hstack(sub_spn_out_path), axis=0).tolist(),
                [batch_size // num_vals] * num_inputs * num_vars * num_vals)
            self.assertEqual(
                np.sum(np.hstack(sub_spn_out_path_log), axis=0).tolist(),
                [batch_size // num_vals] * num_inputs * num_vars * num_vals)
            self.assertEqual(
                np.sum(np.hstack(spn_out_path), axis=0).tolist(),
                [batch_size // num_vals] * num_inputs * num_vars * num_vals)
            self.assertEqual(
                np.sum(np.hstack(spn_out_path_log), axis=0).tolist(),
                [batch_size // num_vals] * num_inputs * num_vars * num_vals)