def disp_def_cst(u, coords=(x, y, z), h_vec=(1, 1, 1)): """ Compute strain measures for C-CST elasticity, as defined in [CST]_. Parameters ---------- u : Matrix (3, 1), list Displacement vector function to apply the micropolar operator. coords : Tuple (3), optional Coordinates for the new reference system. This is an optional parameter it takes (x, y, z) as default. h_vec : Tuple (3), optional Scale coefficients for the new coordinate system. It takes (1, 1, 1), as default. Returns ------- strain : Matrix (3, 3) Strain tensor. curvature : Matrix (3, 3) Curvature tensor. """ strain = sym_grad(u, coords, h_vec) curvature = S(1) / 4 * curl(curl(u, coords, h_vec), coords, h_vec) return strain, dual_tensor(curvature)
def navier_cauchy(u, parameters, coords=(x, y, z), h_vec=(1, 1, 1)): """ Navier-Cauchy operator of a vector function u. Parameters ---------- u : Matrix (3, 1), list Vector function to apply the Navier-Cauchy operator. parameters : tuple Material parameters in the following order: lamda : float Lamé's first parameter. mu : float, > 0 Lamé's second parameter. coords : Tuple (3), optional Coordinates for the new reference system. This is an optional parameter it takes (x, y, z) as default. h_vec : Tuple (3), optional Scale coefficients for the new coordinate system. It takes (1, 1, 1), as default. Returns ------- navier_op : Matrix (3, 1) Components of the Navier-Cauchy operator applied to the displacement vector. """ lamda, mu = parameters u = Matrix(u) term1 = (lamda + 2 * mu) * grad(div(u, coords, h_vec), coords, h_vec) term2 = mu * curl(curl(u, coords, h_vec), coords, h_vec) return simplify(term1 - term2)
def c_cst(u, parameters, coords=(x, y, z), h_vec=(1, 1, 1)): """ Corrected-Couple-Stress-Theory (C-CST) elasticity operator of a vector function u, as presented in [CST]_. Parameters ---------- u : Matrix (3, 1), list Vector function to apply the Navier-Cauchy operator. parameters : tuple Material parameters in the following order: lamda : float Lamé's first parameter. mu : float, > 0 Lamé's second parameter. eta : float, > 0 Couple stress modulus in C-CST. coords : Tuple (3), optional Coordinates for the new reference system. This is an optional parameter it takes (x, y, z) as default. h_vec : Tuple (3), optional Scale coefficients for the new coordinate system. It takes (1, 1, 1), as default. Returns ------- c_cst : Matrix (3, 1) Components of the C-CST operator applied to the displacement vector References ---------- .. [CST] Ali R. Hadhesfandiari, Gary F. Dargush. Couple stress theory for solids. International Journal for Solids and Structures, 2011, 48, 2496-2510. """ lamda, mu, eta = parameters u = Matrix(u) term1 = (lamda + 2 * mu) * grad(div(u, coords, h_vec), coords, h_vec) term2 = mu * curl(curl(u, coords, h_vec), coords, h_vec) term3 = eta * lap_vec(curl(curl(u, coords, h_vec), coords, h_vec), coords, h_vec) return simplify(term1 - term2 + term3)
def micropolar(u, phi, parameters, coords=(x, y, z), h_vec=(1, 1, 1)): """ Micropolar operator of a vector function u, as defined in [NOW]_. Parameters ---------- u : Matrix (3, 1), list Displacement vector function to apply the micropolar operator. phi : Matrix (3, 1), list Microrrotation (pseudo)-vector function to apply the micropolar operator. parameters : tuple Material parameters in the following order: lamda : float Lamé's first parameter. mu : float, > 0 Lamé's second parameter. alpha : float, > 0 Micropolar parameter. beta : float Micropolar parameter. gamma : float, > 0 Micropolar parameter. epsilon : float, > 0 Micropolar parameter. coords : Tuple (3), optional Coordinates for the new reference system. This is an optional parameter it takes (x, y, z) as default. h_vec : Tuple (3), optional Scale coefficients for the new coordinate system. It takes (1, 1, 1), as default. Returns ------- disp_op : Matrix (3, 1) Displacement components. rot_op : Matrix (3, 1) Microrrotational components. References ---------- .. [NOW] Witold Nowacki. Theory of micropolar elasticity. International centre for mechanical sciences, Courses and lectures, No. 25. Berlin: Springer, 1972. """ lamda, mu, alpha, beta, gamma, epsilon = parameters u = Matrix(u) phi = Matrix(phi) u_op = (lamda + 2*mu) * grad(div(u, coords, h_vec), coords, h_vec) \ - (mu + alpha) * curl(curl(u, coords, h_vec), coords, h_vec) \ + 2*alpha*curl(phi, coords, h_vec) phi_op = (beta + 2*gamma) * grad(div(phi, coords, h_vec), coords, h_vec)\ - (gamma + epsilon) * curl(curl(phi, coords, h_vec), coords, h_vec)\ + 2*alpha*curl(u, coords, h_vec) - 4*alpha*phi return simplify(u_op), simplify(phi_op)
def test_curl(): rot = curl([0, -x**2, 0]) expected_rot = Matrix([[0], [0], [-2 * x]]) assert rot == expected_rot