コード例 #1
0
	def get_sample(self):
		if random.randint(0, 100) > self.end_sample_percent:
			sample = Node([random.uniform(self.space[0], self.space[1]),
						  random.uniform(self.space[0], self.space[1]),
						  random.uniform(-math.pi, math.pi)])
		else:  # end point sampling
			sample = Node(self.end.pose)
		return sample
コード例 #2
0
	def steer_2(self, source_node, dest_node):
		# take source_node and steer towards destination node
		dtheta = np.array([-self.max_curvature, 0, self.max_curvature])
		dx = np.cos(source_node.pose[2] + dtheta/2)
		dy = np.sin(source_node.pose[2] + dtheta/2)
		vec = np.array([dx, dy, dtheta])
		new_node_list = [Node(source_node.pose + self.growth * vec[:, 0]), Node(source_node.pose + self.growth * vec[:, 1]), Node(source_node.pose + self.growth * vec[:, 2])]
		d_list = [dist(new_node, dest_node) for new_node in new_node_list]
		mindist = min(d_list)
		new_node = new_node_list[d_list.index(mindist)]
		new_node.cost = float("inf")
		new_node.parent = None
		return new_node
コード例 #3
0
 def get_sample(self):
     sample = Node([
         random.uniform(self.space[0], self.space[1]),
         random.uniform(self.space[2], self.space[3]),
         random.uniform(-math.pi, math.pi)
     ])
     return sample
コード例 #4
0
	def steer(self, source_node, dest_node):
		# take source_node and steer towards destination node
		dtheta = random.uniform(-self.max_curvature, self.max_curvature)
		dx = np.cos(source_node.pose[2] + dtheta/2)
		dy = np.sin(source_node.pose[2] + dtheta/2)
		vec = np.array([dx, dy, dtheta])
		new_node = Node(source_node.pose + self.growth * vec)
		return new_node
コード例 #5
0
	def __init__(self, start, end, space, obstacles, growth=1.0, max_iter=500, end_sample_percent=15):
		"""
		:param start: [x,y] starting location
		:param end: [x,y[ ending location
		:param space: [min,max] bounds on square space
		:param obstacles: list of square obstacles
		:param growth: size of growth each new sample
		:param max_iter: max number of iterations for algorithm
		:param end_sample_percent: percent chance to get sample from goal location
		"""
		self.start = Node(start)
		self.end = Node(end)
		self.space = space
		self.growth = growth
		self.end_sample_percent = end_sample_percent
		self.max_iter = max_iter
		self.obstacles = obstacles
		self.kd_tree = KD_Tree.create([self.start])
コード例 #6
0
	def __init__(self, start, goal, space, obstacles, growth=3.0, max_iter=300, max_dist=40, max_curvature=1.0, end_sample_percent=15):
		"""
		:param start: [x,y] starting location
		:param end: [x,y[ ending location
		:param space: [min,max] bounds on square space
		:param obstacles: list of square obstacles
		:param growth: size of growth each new sample
		:param max_iter: max number of iterations for algorithm
		:param end_sample_percent: percent chance to get sample from goal location
		"""
		self.start = Node(start)
		self.end = Node(goal)
		self.space = space
		self.growth = growth
		self.max_iter = max_iter
		self.max_dist = max_dist
		self.obstacles = obstacles
		self.node_list = [self.start]
		self.max_curvature = max_curvature
		self.local_planner_time = 0.0
		self.end_sample_percent = end_sample_percent
コード例 #7
0
	def steer(self, sample, nearest_node):
		# take nearest_node and expand in direction of sample
		angle = math.atan2(sample.pose[1] - nearest_node.pose[1], sample.pose[0] - nearest_node.pose[0])
		new_node = Node([sample.pose[0], sample.pose[1]])
		currentDistance = dist(sample, nearest_node)
		# find a point within growth of nearest_node, and closest to sample
		if currentDistance <= self.growth:
			pass
		else:
			new_node.pose[0] = nearest_node.pose[0] + self.growth * math.cos(angle)
			new_node.pose[1] = nearest_node.pose[1] + self.growth * math.sin(angle)
		new_node.cost = float("inf")
		new_node.parent = None
		return new_node
コード例 #8
0
	def steer(self, source_node, dest_node):
		# take source_node and steer towards destination node
		dtheta = random.uniform(-self.max_curvature/2, self.max_curvature/2)
		dx = np.cos(source_node.pose[2] + dtheta/2)
		dy = np.sin(source_node.pose[2] + dtheta/2)
		vec = np.array([dx, dy, dtheta])
		new_node = Node(source_node.pose + self.growth * vec)

		if new_node.pose[0] < self.space[0]:
			new_node.pose[0] = self.space[0] - random.uniform(0, 1)
		if new_node.pose[0] > self.space[1]:
			new_node.pose[0] = self.space[1] - random.uniform(0, 1)
		if new_node.pose[1] < self.space[2]:
			new_node.pose[1] = self.space[2] - random.uniform(0, 1)
		if new_node.pose[1] > self.space[3]:
			new_node.pose[1] = self.space[3] - random.uniform(0, 1)
		return new_node
コード例 #9
0
    def steer(self, sample, nearest_node):
        # take nearest_node and expand in direction of sample
        vec = np.array((sample.pose[0] - nearest_node.pose[0],
                        sample.pose[1] - nearest_node.pose[1]))
        unit_vec = vec / np.linalg.norm(vec)
        new_node = Node([sample.pose[0], sample.pose[1]])
        currentDistance = dist(sample, nearest_node)
        # find a point within growth of nearest_node, and closest to sample
        if currentDistance <= self.growth:
            pass
        else:
            new_node.pose[0] = nearest_node.pose[0] + self.growth * unit_vec[0]
            new_node.pose[1] = nearest_node.pose[1] + self.growth * unit_vec[1]

        new_node.cost = float("inf")
        new_node.parent = None
        return new_node
コード例 #10
0
	def __init__(self, start, RRT_params, gmrf_params, var_x, max_dist, plot):
		"""
		:param start: initial location of agent
		:param RRT_params: specified in config file
		:param gmrf_params: specified in config file
		:param var_x: variance of field as a 1D vector of variance of each node in GMRF
		:param max_dist: maximum distance that the algorithm solution will return
		:param plot: only used for plotting in the middle of running algorithm good for debugging
		"""
		self.start = Node(start)
		self.node_list = [self.start]
		self.max_dist = max(max_dist, 10)   # can't just take the max_dist in case at the end of the simulation this will allow no possible paths
		self.var_x = var_x
		self.gmrf_params = gmrf_params
		(self.space, self.max_time, self.max_curvature, self.growth, self.min_dist, self.obstacles) = RRT_params
		self.local_planner_time = 0.0
		self.method_time = 0.0
		self.plot = plot