コード例 #1
0
def ResNext_bottleneck_B(split, bottom, dim_in, features, stride):
    dim_out = features * 4
    dim_branch_out = int(math.floor(features * (opt.baseWidth / 64)))
    branch_container = list()

    for i in range(opt.cardinalty):
        # torch#75: s:add(Convolution(nInputPlane,d,1,1,1,1,0,0))
        scale1, relu1 = conv_BN_scale_relu(split, bottom, dim_branch_out, 1, 1,
                                           0)
        # torch#76: s:add(Convolution(d,d,3,3,stride,stride,1,1))
        # NOTE: I don't think stride is needed, as we need to keep dim the same
        scale2, relu2 = conv_BN_scale_relu(split, relu1, dim_branch_out, 3,
                                           stride, 1)
        branch_container.append(relu2)
    comb = L.Concat(*branch_container, in_place=True)

    # torch#96: s:add(Convolution(D*C,n*4,1,1,1,1,0,0))
    scale_comb, relu_comb = conv_BN_scale_relu(split, comb, dim_out, 1, 1, 0)

    if dim_in == dim_out:
        scale0 = bottom
        relu0 = L.ReLU(scale0, in_place=True)
    else:
        scale0, relu0 = conv_BN_scale_relu(split, bottom, dim_out, 1, stride,
                                           0)

    return L.Eltwise(relu_comb, relu0, operation=P.Eltwise.SUM)
コード例 #2
0
def decompose(split, bottom, dim_in, dim_branch_out, cardinality):
    branch_container = list()
    for i in range(cardinality):
        # torch#75: s:add(Convolution(nInputPlane,d,1,1,1,1,0,0))
        scale1, relu1 = conv_BN_scale_relu(split, bottom, dim_branch_out, 1, 1, 0);
        # torch#76: s:add(Convolution(d,d,3,3,stride,stride,1,1))
        # NOTE: I don't think stride is needed, as we need to keep dim the same
        scale2, relu2 = conv_BN_scale_relu(split, relu1,  dim_branch_out, 3, 1, 1)
        branch_container.append(relu2)
    comb = L.Concat(*branch_container, in_place=True)
    return comb
コード例 #3
0
def expand_dim_n_bottleneck_B(split, bottom, dim_in, features, stride):
    dim_branch_out = int(math.floor(features * (opt.baseWidth / 64)))
    dim_out = dim_in * 4
    branch_container = list()
    for i in range(opt.cardinalty):
        scale1, relu1 = conv_BN_scale_relu(split, bottom, dim_branch_out, 1, 1,
                                           0)
        scale2, relu2 = conv_BN_scale_relu(split, relu1, dim_branch_out, 3,
                                           stride, 1)
        branch_container.append(relu2)
    comb = L.Concat(*branch_container, in_place=True)
    scale_comb, relu_comb = conv_BN_scale_relu(split, comb, dim_out, 1, 1, 0)
    scale_i, relu_i = conv_BN_scale_relu(split, bottom, dim_out, 1, stride, 0)
    return L.Eltwise(relu_comb, relu_i, operation=P.Eltwise.SUM)
コード例 #4
0
ファイル: rebuild.py プロジェクト: sydney0zq/caffe-lab
def ResNext(split, n):
    if split == "train":
        data, labels = L.Data(source=TRAIN_FILE,
                              backend=P.Data.LMDB,
                              batch_size=opt.batch_size,
                              ntop=2,
                              transform_param=dict(mean_file=MEAN_FILE,
                                                   crop_size=28,
                                                   mirror=True))
    elif split == "test":
        data, labels = L.Data(source=TEST_FILE,
                              backend=P.Data.LMDB,
                              batch_size=opt.batch_size,
                              ntop=2,
                              transform_param=dict(mean_file=MEAN_FILE,
                                                   crop_size=28))
    scale, result = conv_BN_scale_relu(
        split, data, nout=64, ks=3, stride=1,
        pad=1)  #NOT CHANGE dim_out 64, 64x{28x28}

    features = 64
    t = expand_dim_n_bottleneck_B(split, result, features, features,
                                  1)  #64->256, 256x{28x28}
    t = same_dim_n_bottlneck_B(split, t, features * 4, features,
                               1)  #256->256, 256x{28x28}
    t = same_dim_n_bottlneck_B(split, t, features * 4, features,
                               1)  #256->256, 256x{28x28}
    features = 128
    t = expand_dim_n_bottleneck_B(split, t, features * 2, features,
                                  2)  #256->512, 512x{14x14}
    t = same_dim_n_bottlneck_B(split, t, features * 4, features,
                               1)  #512->512, 512x{14x14}
    t = same_dim_n_bottlneck_B(split, t, features * 4, features,
                               1)  #512->512, 512x{14x14}
    features = 256
    t = expand_dim_n_bottleneck_B(split, t, features * 2, features,
                                  2)  #512->1024, 1024x{7x7}
    t = same_dim_n_bottlneck_B(split, t, features * 4, features,
                               1)  #1024->1024, 1024x{7x7}
    t = same_dim_n_bottlneck_B(split, t, features * 4, features,
                               1)  #1024->1024, 1024x{7x7}

    #pool = L.Pooling(result, pool = P.Pooling.AVE, global_pooling = True, kernel_size = 8, stride = 1)
    pool = L.Pooling(t, pool=P.Pooling.AVE, global_pooling=True)
    IP = L.InnerProduct(pool,
                        num_output=10,
                        weight_filler=dict(type='xavier'),
                        bias_filler=dict(type='constant'))
    acc = L.Accuracy(IP, labels)
    loss = L.SoftmaxWithLoss(IP, labels)
    return to_proto(acc, loss)
コード例 #5
0
def ResNext(split, n):
    DATAPATH_PREFIX = "../CIFAR10/"
    TRAIN_FILE = DATAPATH_PREFIX + "cifar10_train_lmdb"
    TEST_FILE = DATAPATH_PREFIX + "cifar10_test_lmdb"
    MEAN_FILE = DATAPATH_PREFIX + "mean.binaryproto"

    if split == "train":
        data, labels = L.Data(source=TRAIN_FILE,
                              backend=P.Data.LMDB,
                              batch_size=opt.batch_size,
                              ntop=2,
                              transform_param=dict(mean_file=MEAN_FILE,
                                                   crop_size=28,
                                                   mirror=True))
    elif split == "test":
        data, labels = L.Data(source=TEST_FILE,
                              backend=P.Data.LMDB,
                              batch_size=opt.batch_size,
                              ntop=2,
                              transform_param=dict(mean_file=MEAN_FILE,
                                                   crop_size=28))
    scale, result = conv_BN_scale_relu(split,
                                       data,
                                       nout=64,
                                       ks=3,
                                       stride=1,
                                       pad=1)

    # Conv2
    t = n_bottleneck_layer_naive(split, result, ResNext_bottleneck_B, 64, n,
                                 1)  # Attention all three stride is 1
    # Conv3
    t = n_bottleneck_layer_naive(
        split, t, ResNext_bottleneck_B, 128, n,
        2)  # Attention 1st stride is 2, the 2nd and 3rd is 1
    # Conv4
    r = n_bottleneck_layer_naive(
        split, t, ResNext_bottleneck_B, 256, n,
        2)  # Attention 1st stride is 2, the 2nd and 3rd is 1
    #pool = L.Pooling(result, pool = P.Pooling.AVE, global_pooling = True, kernel_size = 8, stride = 1)
    pool = L.Pooling(r, pool=P.Pooling.AVE, global_pooling=True)
    IP = L.InnerProduct(pool,
                        num_output=int(opt.dataset[5:]),
                        weight_filler=dict(type='xavier'),
                        bias_filler=dict(type='constant'))
    acc = L.Accuracy(IP, labels)
    loss = L.SoftmaxWithLoss(IP, labels)
    return to_proto(acc, loss)
コード例 #6
0
ファイル: model_force.py プロジェクト: sydney0zq/caffe-lab
def ResNext(split, n):
    DATAPATH_PREFIX = "../CIFAR10/"
    TRAIN_FILE = DATAPATH_PREFIX + "cifar10_train_lmdb"
    TEST_FILE = DATAPATH_PREFIX + "cifar10_test_lmdb"
    MEAN_FILE = DATAPATH_PREFIX + "mean.binaryproto"

    if split == "train":
        data, labels = L.Data(source=TRAIN_FILE,
                              backend=P.Data.LMDB,
                              batch_size=opt.batch_size,
                              ntop=2,
                              transform_param=dict(mean_file=MEAN_FILE,
                                                   crop_size=28,
                                                   mirror=True))
    elif split == "test":
        data, labels = L.Data(source=TEST_FILE,
                              backend=P.Data.LMDB,
                              batch_size=opt.batch_size,
                              ntop=2,
                              transform_param=dict(mean_file=MEAN_FILE,
                                                   crop_size=28))
    scale, result = conv_BN_scale_relu(
        split, data, nout=64, ks=3, stride=1,
        pad=1)  #NOT CHANGE dim_out 64, 64x{28x28}

    features = 64
    t = expand_dim_n_bottleneck_B(split, result, features, features, 1)
    t = same_dim_n_bottlneck_B(split, t, features * 4, features, 1)
    t = same_dim_n_bottlneck_B(split, t, features * 4, features, 1)
    features = 128
    t = expand_dim_n_bottleneck_B(split, t, features * 2, features, 2)
    t = same_dim_n_bottlneck_B(split, t, features * 4, features, 1)
    t = same_dim_n_bottlneck_B(split, t, features * 4, features, 1)
    features = 256
    t = expand_dim_n_bottleneck_B(split, t, features * 2, features, 2)
    t = same_dim_n_bottlneck_B(split, t, features * 4, features, 1)
    t = same_dim_n_bottlneck_B(split, t, features * 4, features, 1)

    #pool = L.Pooling(result, pool = P.Pooling.AVE, global_pooling = True, kernel_size = 8, stride = 1)
    pool = L.Pooling(t, pool=P.Pooling.AVE, global_pooling=True)
    IP = L.InnerProduct(pool,
                        num_output=10,
                        weight_filler=dict(type='xavier'),
                        bias_filler=dict(type='constant'))
    acc = L.Accuracy(IP, labels)
    loss = L.SoftmaxWithLoss(IP, labels)
    return to_proto(acc, loss)
コード例 #7
0
def ResNext(split, n):
    if split == "train":
        data, labels = L.Data(source=TRAIN_FILE,
                              backend=P.Data.LMDB,
                              batch_size=opt.batch_size,
                              ntop=2,
                              transform_param=dict(mean_file=MEAN_FILE,
                                                   crop_size=28,
                                                   mirror=True))
    elif split == "test":
        data, labels = L.Data(source=TEST_FILE,
                              backend=P.Data.LMDB,
                              batch_size=opt.batch_size,
                              ntop=2,
                              transform_param=dict(mean_file=MEAN_FILE,
                                                   crop_size=28))
    scale, result = conv_BN_scale_relu(
        split, data, nout=64, ks=3, stride=1,
        pad=1)  #NOT CHANGE dim_out 64, 64x{28x28}
    # Block 1
    # The first bottleneck
    bc = []
    features = 64
    dim_branch_out = int(math.floor(features * (opt.baseWidth / 64.0)))
    print("features: ", features, "dim_branch_out: ", dim_branch_out)
    for i in range(opt.cardinalty):
        scale1, relu1 = conv_BN_scale_relu(split, result, dim_branch_out, 1, 1,
                                           0)
        scale2, relu2 = conv_BN_scale_relu(split, relu1, dim_branch_out, 3, 1,
                                           1)
        bc.append(relu2)

    comb = L.Concat(*bc)
    sf, rf = conv_BN_scale_relu(split, comb, 256, 1, 1, 0)
    scale_i, relu_i = conv_BN_scale_relu(split, result, 256, 1, 1, 0)
    rf1 = L.Eltwise(rf, relu_i, operation=P.Eltwise.SUM)

    # The second bottleneck
    bc = []
    for i in range(opt.cardinalty):
        scale1, relu1 = conv_BN_scale_relu(split, rf1, dim_branch_out, 1, 1, 0)
        scale2, relu2 = conv_BN_scale_relu(split, relu1, dim_branch_out, 3, 1,
                                           1)
        bc.append(relu2)

    comb = L.Concat(*bc)
    sf, rf = conv_BN_scale_relu(split, comb, 256, 1, 1, 0)
    scale_i, relu_i = conv_BN_scale_relu(split, rf1, 256, 1, 1, 0)
    rf2 = L.Eltwise(rf, relu_i, operation=P.Eltwise.SUM)

    # The third bottleneck
    bc = []
    for i in range(opt.cardinalty):
        scale1, relu1 = conv_BN_scale_relu(split, rf2, dim_branch_out, 1, 1, 0)
        scale2, relu2 = conv_BN_scale_relu(split, relu1, dim_branch_out, 3, 1,
                                           1)
        bc.append(relu2)

    comb = L.Concat(*bc)
    sf, rf = conv_BN_scale_relu(split, comb, 256, 1, 1, 0)
    scale_i, relu_i = conv_BN_scale_relu(split, rf2, 256, 1, 1, 0)
    rf3 = L.Eltwise(rf, relu_i, operation=P.Eltwise.SUM)

    # The 4th bttleneck
    bc = []
    features = 128
    dim_branch_out = int(math.floor(features * (opt.baseWidth / 64.0)))
    print("features: ", features, "dim_branch_out: ", dim_branch_out)
    for i in range(opt.cardinalty):
        scale1, relu1 = conv_BN_scale_relu(split, rf3, dim_branch_out, 1, 2, 0)
        scale2, relu2 = conv_BN_scale_relu(split, relu1, dim_branch_out, 3, 1,
                                           1)
        bc.append(relu2)

    comb = L.Concat(*bc)
    sf, rf = conv_BN_scale_relu(split, comb, 512, 1, 1, 0)
    scale_i, relu_i = conv_BN_scale_relu(split, rf3, 512, 1, 2, 0)
    rf4 = L.Eltwise(rf, relu_i, operation=P.Eltwise.SUM)

    # The 5th bottleneck
    bc = []
    for i in range(opt.cardinalty):
        scale1, relu1 = conv_BN_scale_relu(split, rf4, dim_branch_out, 1, 1, 0)
        scale2, relu2 = conv_BN_scale_relu(split, relu1, dim_branch_out, 3, 1,
                                           1)
        bc.append(relu2)

    comb = L.Concat(*bc)
    sf, rf = conv_BN_scale_relu(split, comb, 512, 1, 1, 0)
    scale_i, relu_i = conv_BN_scale_relu(split, rf4, 512, 1, 1, 0)
    rf5 = L.Eltwise(rf, relu_i, operation=P.Eltwise.SUM)

    # The 6th bottleneck
    bc = []
    for i in range(opt.cardinalty):
        scale1, relu1 = conv_BN_scale_relu(split, rf5, dim_branch_out, 1, 1, 0)
        scale2, relu2 = conv_BN_scale_relu(split, relu1, dim_branch_out, 3, 1,
                                           1)
        bc.append(relu2)

    comb = L.Concat(*bc)
    sf, rf = conv_BN_scale_relu(split, comb, 512, 1, 1, 0)
    scale_i, relu_i = conv_BN_scale_relu(split, rf5, 512, 1, 1, 0)
    rf6 = L.Eltwise(rf, relu_i, operation=P.Eltwise.SUM)

    # The 7th bttleneck
    bc = []
    features = 256
    dim_branch_out = int(math.floor(features * (opt.baseWidth / 64.0)))
    print("features: ", features, "dim_branch_out: ", dim_branch_out)
    for i in range(opt.cardinalty):
        scale1, relu1 = conv_BN_scale_relu(split, rf6, dim_branch_out, 1, 2, 0)
        scale2, relu2 = conv_BN_scale_relu(split, relu1, dim_branch_out, 3, 1,
                                           1)
        bc.append(relu2)

    comb = L.Concat(*bc)
    sf, rf = conv_BN_scale_relu(split, comb, 1024, 1, 1, 0)
    scale_i, relu_i = conv_BN_scale_relu(split, rf6, 1024, 1, 2, 0)
    rf7 = L.Eltwise(rf, relu_i, operation=P.Eltwise.SUM)

    # The 8th bottleneck
    bc = []
    for i in range(opt.cardinalty):
        scale1, relu1 = conv_BN_scale_relu(split, rf7, dim_branch_out, 1, 1, 0)
        scale2, relu2 = conv_BN_scale_relu(split, relu1, dim_branch_out, 3, 1,
                                           1)
        bc.append(relu2)

    comb = L.Concat(*bc)
    sf, rf = conv_BN_scale_relu(split, comb, 1024, 1, 1, 0)
    scale_i, relu_i = conv_BN_scale_relu(split, rf7, 1024, 1, 1, 0)
    rf8 = L.Eltwise(rf, relu_i, operation=P.Eltwise.SUM)

    # The 9th bottleneck
    bc = []
    for i in range(opt.cardinalty):
        scale1, relu1 = conv_BN_scale_relu(split, rf8, dim_branch_out, 1, 1, 0)
        scale2, relu2 = conv_BN_scale_relu(split, relu1, dim_branch_out, 3, 1,
                                           1)
        bc.append(relu2)

    comb = L.Concat(*bc)
    sf, rf = conv_BN_scale_relu(split, comb, 1024, 1, 1, 0)
    scale_i, relu_i = conv_BN_scale_relu(split, rf8, 1024, 1, 1, 0)
    rf9 = L.Eltwise(rf, relu_i, operation=P.Eltwise.SUM)

    #pool = L.Pooling(result, pool = P.Pooling.AVE, global_pooling = True, kernel_size = 8, stride = 1)
    pool = L.Pooling(rf9, pool=P.Pooling.AVE, global_pooling=True)
    IP = L.InnerProduct(pool,
                        num_output=10,
                        weight_filler=dict(type='xavier'),
                        bias_filler=dict(type='constant'))
    acc = L.Accuracy(IP, labels)
    loss = L.SoftmaxWithLoss(IP, labels)
    return to_proto(acc, loss)