def batch_process(batch): if (os.getcwd().endswith('ltr_msmarco')): stopwords = read_stopwords('stopwords.txt', lower_case=True) else: stopwords = read_stopwords('./scripts/ltr_msmarco/stopwords.txt', lower_case=True) nlp = SpacyTextParser('en_core_web_sm', stopwords, keep_only_alpha_num=True, lower_case=True) analyzer = Analyzer(get_lucene_analyzer()) #nlp_ent = spacy.load("en_core_web_sm") bert_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") def process(line): if not line: return None line = line[:maxDocSize] # cut documents that are too long! fields = line.split('\t') if len(fields) != 2: return None pid, body = fields text, text_unlemm = nlp.proc_text(body) #doc = nlp_ent(body) #entity = {} #for i in range(len(doc.ents)): #entity[doc.ents[i].text] = doc.ents[i].label_ #entity = json.dumps(entity) analyzed = analyzer.analyze(body) for token in analyzed: assert ' ' not in token contents = ' '.join(analyzed) doc = { "id": pid, "text": text, "text_unlemm": text_unlemm, 'contents': contents, "raw": body } doc["text_bert_tok"] = get_retokenized(bert_tokenizer, body.lower()) return doc res = [] start = time.time() for line in batch: res.append(process(line)) if len(res) % 1000 == 0: end = time.time() print(f'finish {len(res)} using {end-start}') start = end return res
def batch_process(batch): #assume call the script from the root dir stopwords = read_stopwords('./scripts/ltr_msmarco/stopwords.txt', lower_case=True) nlp = SpacyTextParser('en_core_web_sm', stopwords, keep_only_alpha_num=True, lower_case=True) analyzer = Analyzer(get_lucene_analyzer()) bert_tokenizer =AutoTokenizer.from_pretrained("bert-base-uncased") def process(line): if not line: return None json_line = json.loads(line) pid = json_line['id'] body = json_line['contents'] #url = json_line['url'] #title = json_line['title'] text, text_unlemm = nlp.proc_text(body) #_,title_unlemm = nlp.proc_text(title) analyzed = analyzer.analyze(body) for token in analyzed: assert ' ' not in token contents = ' '.join(analyzed) doc = {"id": pid, "text": text, "text_unlemm": text_unlemm, 'contents': contents, #"title_unlemm": title_unlemm, #"url": url, "raw": body} if (len(body)>512): doc["text_bert_tok"] = get_retokenized(bert_tokenizer, body.lower()[:512]) else: doc["text_bert_tok"] = get_retokenized(bert_tokenizer, body.lower()) return doc res = [] start = time.time() for line in batch: res.append(process(line)) if len(res) % 10000 == 0: end = time.time() print(f'finish {len(res)} using {end-start}') start = end return res
required=True) parser.add_argument('--min_query_token_qty', type=int, default=0, metavar='min # of query tokens', help='ignore queries that have smaller # of tokens') args = parser.parse_args() print(args) arg_vars = vars(args) inpFile = open(args.input) outFile = open(args.output, 'w') minQueryTokQty = args.min_query_token_qty if os.getcwd().endswith('ltr_msmarco'): stopwords = read_stopwords('stopwords.txt', lower_case=True) else: stopwords = read_stopwords('./scripts/ltr_msmarco/stopwords.txt', lower_case=True) print(stopwords) nlp = SpacyTextParser('en_core_web_sm', stopwords, keep_only_alpha_num=True, lower_case=True) analyzer = Analyzer(get_lucene_analyzer()) nlp_ent = spacy.load("en_core_web_sm") bert_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") # Input file is a TSV file ln = 0 for line in tqdm(inpFile):
required=True) parser.add_argument('--min_query_token_qty', type=int, default=0, metavar='min # of query tokens', help='ignore queries that have smaller # of tokens') args = parser.parse_args() print(args) arg_vars = vars(args) inpFile = open(args.input) outFile = open(args.output, 'w') minQueryTokQty = args.min_query_token_qty stopwords = read_stopwords('stopwords.txt', lower_case=True) print(stopwords) nlp = SpacyTextParser('en_core_web_sm', stopwords, keep_only_alpha_num=True, lower_case=True) analyzer = Analyzer(get_lucene_analyzer()) nlp_ent = spacy.load("en_core_web_sm") bert_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") # Input file is a TSV file ln = 0 for line in tqdm(inpFile): ln += 1 line = line.strip() if not line: