def __init__(self, net_spec, in_dim, out_dim): assert len(in_dim) == 3 # image shape (c,w,h) nn.Module.__init__(self) Net.__init__(self, net_spec, in_dim, out_dim) # set default util.set_attr(self, dict( init_fn=None, normalize=False, batch_norm=False, clip_grad_val=None, loss_spec={'name': 'MSELoss'}, optim_spec={'name': 'Adam'}, lr_scheduler_spec=None, update_type='replace', update_frequency=1, polyak_coef=0.0, gpu=False, )) util.set_attr(self, self.net_spec, [ 'conv_hid_layers', 'fc_hid_layers', 'hid_layers_activation', 'init_fn', 'normalize', 'batch_norm', 'clip_grad_val', 'loss_spec', 'optim_spec', 'lr_scheduler_spec', 'update_type', 'update_frequency', 'polyak_coef', 'gpu', ]) # Guard against inappropriate algorithms and environments assert isinstance(out_dim, int) # conv body self.conv_model = self.build_conv_layers(self.conv_hid_layers) self.conv_out_dim = self.get_conv_output_size() # fc body if ps.is_empty(self.fc_hid_layers): tail_in_dim = self.conv_out_dim else: # fc layer from flattened conv self.fc_model = net_util.build_fc_model([self.conv_out_dim] + self.fc_hid_layers, self.hid_layers_activation) tail_in_dim = self.fc_hid_layers[-1] # tails. avoid list for single-tail for compute speed self.v = nn.Linear(tail_in_dim, 1) # state value self.adv = nn.Linear(tail_in_dim, out_dim) # action dependent raw advantage self.model_tails = nn.ModuleList(self.v, self.adv) net_util.init_layers(self, self.init_fn) self.loss_fn = net_util.get_loss_fn(self, self.loss_spec) self.to(self.device) self.train()
def __init__(self, net_spec, in_dim, out_dim): nn.Module.__init__(self) Net.__init__(self, net_spec, in_dim, out_dim) # set default util.set_attr( self, dict( init_fn=None, clip_grad_val=None, loss_spec={'name': 'MSELoss'}, optim_spec={'name': 'Adam'}, lr_scheduler_spec=None, update_type='replace', update_frequency=1, polyak_coef=0.0, gpu=False, )) util.set_attr(self, self.net_spec, [ 'shared', 'hid_layers', 'hid_layers_activation', 'init_fn', 'clip_grad_val', 'loss_spec', 'optim_spec', 'lr_scheduler_spec', 'update_type', 'update_frequency', 'polyak_coef', 'gpu', ]) # Guard against inappropriate algorithms and environments # Build model body dims = [self.in_dim] + self.hid_layers self.model_body = net_util.build_fc_model(dims, self.hid_layers_activation) # output layers self.v = nn.Linear(dims[-1], 1) # state value self.adv = nn.Linear(dims[-1], out_dim) # action dependent raw advantage net_util.init_layers(self, self.init_fn) self.loss_fn = net_util.get_loss_fn(self, self.loss_spec) self.to(self.device)
def __init__(self, net_spec, in_dim, out_dim): ''' net_spec: conv_hid_layers: list containing dimensions of the convolutional hidden layers, each is a list representing hid_layer = out_d, kernel, stride, padding, dilation. Asssumed to all come before the flat layers. Note: a convolutional layer should specify the in_channel, out_channels, kernel_size, stride (of kernel steps), padding, and dilation (spacing between kernel points) E.g. [3, 16, (5, 5), 1, 0, (2, 2)] For more details, see http://pytorch.org/docs/master/nn.html#conv2d and https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md fc_hid_layers: list of fc layers following the convolutional layers hid_layers_activation: activation function for the hidden layers out_layer_activation: activation function for the output layer, same shape as out_dim init_fn: weight initialization function normalize: whether to divide by 255.0 to normalize image input batch_norm: whether to add batch normalization after each convolutional layer, excluding the input layer. clip_grad_val: clip gradient norm if value is not None loss_spec: measure of error between model predictions and correct outputs optim_spec: parameters for initializing the optimizer lr_scheduler_spec: Pytorch optim.lr_scheduler update_type: method to update network weights: 'replace' or 'polyak' update_frequency: how many total timesteps per update polyak_coef: ratio of polyak weight update gpu: whether to train using a GPU. Note this will only work if a GPU is available, othewise setting gpu=True does nothing ''' assert len(in_dim) == 3 # image shape (c,w,h) nn.Module.__init__(self) super().__init__(net_spec, in_dim, out_dim) # set default util.set_attr( self, dict( out_layer_activation=None, init_fn=None, normalize=False, batch_norm=True, clip_grad_val=None, loss_spec={'name': 'MSELoss'}, optim_spec={'name': 'Adam'}, lr_scheduler_spec=None, update_type='replace', update_frequency=1, polyak_coef=0.0, gpu=False, )) util.set_attr(self, self.net_spec, [ 'conv_hid_layers', 'fc_hid_layers', 'hid_layers_activation', 'out_layer_activation', 'init_fn', 'normalize', 'batch_norm', 'clip_grad_val', 'loss_spec', 'optim_spec', 'lr_scheduler_spec', 'update_type', 'update_frequency', 'polyak_coef', 'gpu', ]) # conv body self.conv_model = self.build_conv_layers(self.conv_hid_layers) self.conv_out_dim = self.get_conv_output_size() # fc body if ps.is_empty(self.fc_hid_layers): tail_in_dim = self.conv_out_dim else: # fc body from flattened conv self.fc_model = net_util.build_fc_model([self.conv_out_dim] + self.fc_hid_layers, self.hid_layers_activation) tail_in_dim = self.fc_hid_layers[-1] # tails. avoid list for single-tail for compute speed if ps.is_integer(self.out_dim): self.model_tail = net_util.build_fc_model( [tail_in_dim, self.out_dim], self.out_layer_activation) else: if not ps.is_list(self.out_layer_activation): self.out_layer_activation = [self.out_layer_activation ] * len(out_dim) assert len(self.out_layer_activation) == len(self.out_dim) tails = [] for out_d, out_activ in zip(self.out_dim, self.out_layer_activation): tail = net_util.build_fc_model([tail_in_dim, out_d], out_activ) tails.append(tail) self.model_tails = nn.ModuleList(tails) net_util.init_layers(self, self.init_fn) self.loss_fn = net_util.get_loss_fn(self, self.loss_spec) self.to(self.device) self.train()
def __init__(self, net_spec, in_dim, out_dim): ''' net_spec: hid_layers: list containing dimensions of the hidden layers hid_layers_activation: activation function for the hidden layers out_layer_activation: activation function for the output layer, same shape as out_dim init_fn: weight initialization function clip_grad_val: clip gradient norm if value is not None loss_spec: measure of error between model predictions and correct outputs optim_spec: parameters for initializing the optimizer lr_scheduler_spec: Pytorch optim.lr_scheduler update_type: method to update network weights: 'replace' or 'polyak' update_frequency: how many total timesteps per update polyak_coef: ratio of polyak weight update gpu: whether to train using a GPU. Note this will only work if a GPU is available, othewise setting gpu=True does nothing ''' nn.Module.__init__(self) super().__init__(net_spec, in_dim, out_dim) # set default util.set_attr( self, dict( out_layer_activation=None, init_fn=None, clip_grad_val=None, loss_spec={'name': 'MSELoss'}, optim_spec={'name': 'Adam'}, lr_scheduler_spec=None, update_type='replace', update_frequency=1, polyak_coef=0.0, gpu=False, )) util.set_attr(self, self.net_spec, [ 'shared', 'hid_layers', 'hid_layers_activation', 'out_layer_activation', 'init_fn', 'clip_grad_val', 'loss_spec', 'optim_spec', 'lr_scheduler_spec', 'update_type', 'update_frequency', 'polyak_coef', 'gpu', ]) dims = [self.in_dim] + self.hid_layers self.model = net_util.build_fc_model(dims, self.hid_layers_activation) # add last layer with no activation # tails. avoid list for single-tail for compute speed if ps.is_integer(self.out_dim): self.model_tail = net_util.build_fc_model( [dims[-1], self.out_dim], self.out_layer_activation) else: if not ps.is_list(self.out_layer_activation): self.out_layer_activation = [self.out_layer_activation ] * len(out_dim) assert len(self.out_layer_activation) == len(self.out_dim) tails = [] for out_d, out_activ in zip(self.out_dim, self.out_layer_activation): tail = net_util.build_fc_model([dims[-1], out_d], out_activ) tails.append(tail) self.model_tails = nn.ModuleList(tails) net_util.init_layers(self, self.init_fn) self.loss_fn = net_util.get_loss_fn(self, self.loss_spec) self.to(self.device) self.train()
def __init__(self, net_spec, in_dim, out_dim): ''' Multi state processing heads, single shared body, and multi action tails. There is one state and action head per body/environment Example: env 1 state env 2 state _______|______ _______|______ | head 1 | | head 2 | |______________| |______________| | | |__________________| ________________|_______________ | Shared body | |________________________________| | ________|_______ | | _______|______ ______|_______ | tail 1 | | tail 2 | |______________| |______________| | | env 1 action env 2 action ''' nn.Module.__init__(self) super().__init__(net_spec, in_dim, out_dim) # set default util.set_attr( self, dict( out_layer_activation=None, init_fn=None, clip_grad_val=None, loss_spec={'name': 'MSELoss'}, optim_spec={'name': 'Adam'}, lr_scheduler_spec=None, update_type='replace', update_frequency=1, polyak_coef=0.0, gpu=False, )) util.set_attr(self, self.net_spec, [ 'hid_layers', 'hid_layers_activation', 'out_layer_activation', 'init_fn', 'clip_grad_val', 'loss_spec', 'optim_spec', 'lr_scheduler_spec', 'update_type', 'update_frequency', 'polyak_coef', 'gpu', ]) assert len( self.hid_layers ) == 3, 'Your hidden layers must specify [*heads], [body], [*tails]. If not, use MLPNet' assert isinstance(self.in_dim, list), 'Hydra network needs in_dim as list' assert isinstance(self.out_dim, list), 'Hydra network needs out_dim as list' self.head_hid_layers = self.hid_layers[0] self.body_hid_layers = self.hid_layers[1] self.tail_hid_layers = self.hid_layers[2] if len(self.head_hid_layers) == 1: self.head_hid_layers = self.head_hid_layers * len(self.in_dim) if len(self.tail_hid_layers) == 1: self.tail_hid_layers = self.tail_hid_layers * len(self.out_dim) self.model_heads = self.build_model_heads(in_dim) heads_out_dim = np.sum( [head_hid_layers[-1] for head_hid_layers in self.head_hid_layers]) dims = [heads_out_dim] + self.body_hid_layers self.model_body = net_util.build_fc_model(dims, self.hid_layers_activation) self.model_tails = self.build_model_tails(self.out_dim, self.out_layer_activation) net_util.init_layers(self, self.init_fn) self.loss_fn = net_util.get_loss_fn(self, self.loss_spec) self.to(self.device) self.train()
def __init__(self, net_spec, in_dim, out_dim): ''' net_spec: cell_type: any of RNN, LSTM, GRU fc_hid_layers: list of fc layers preceeding the RNN layers hid_layers_activation: activation function for the fc hidden layers out_layer_activation: activation function for the output layer, same shape as out_dim rnn_hidden_size: rnn hidden_size rnn_num_layers: number of recurrent layers bidirectional: if RNN should be bidirectional seq_len: length of the history of being passed to the net init_fn: weight initialization function clip_grad_val: clip gradient norm if value is not None loss_spec: measure of error between model predictions and correct outputs optim_spec: parameters for initializing the optimizer lr_scheduler_spec: Pytorch optim.lr_scheduler update_type: method to update network weights: 'replace' or 'polyak' update_frequency: how many total timesteps per update polyak_coef: ratio of polyak weight update gpu: whether to train using a GPU. Note this will only work if a GPU is available, othewise setting gpu=True does nothing ''' nn.Module.__init__(self) super().__init__(net_spec, in_dim, out_dim) # set default util.set_attr( self, dict( out_layer_activation=None, cell_type='GRU', rnn_num_layers=1, bidirectional=False, init_fn=None, clip_grad_val=None, loss_spec={'name': 'MSELoss'}, optim_spec={'name': 'Adam'}, lr_scheduler_spec=None, update_type='replace', update_frequency=1, polyak_coef=0.0, gpu=False, )) util.set_attr(self, self.net_spec, [ 'cell_type', 'fc_hid_layers', 'hid_layers_activation', 'out_layer_activation', 'rnn_hidden_size', 'rnn_num_layers', 'bidirectional', 'seq_len', 'init_fn', 'clip_grad_val', 'loss_spec', 'optim_spec', 'lr_scheduler_spec', 'update_type', 'update_frequency', 'polyak_coef', 'gpu', ]) # restore proper in_dim from env stacked state_dim (stack_len, *raw_state_dim) self.in_dim = in_dim[1:] if len(in_dim) > 2 else in_dim[1] # fc body: state processing model if ps.is_empty(self.fc_hid_layers): self.rnn_input_dim = self.in_dim else: fc_dims = [self.in_dim] + self.fc_hid_layers self.fc_model = net_util.build_fc_model(fc_dims, self.hid_layers_activation) self.rnn_input_dim = fc_dims[-1] # RNN model self.rnn_model = getattr(nn, net_util.get_nn_name(self.cell_type))( input_size=self.rnn_input_dim, hidden_size=self.rnn_hidden_size, num_layers=self.rnn_num_layers, batch_first=True, bidirectional=self.bidirectional) # tails. avoid list for single-tail for compute speed if ps.is_integer(self.out_dim): self.model_tail = net_util.build_fc_model( [self.rnn_hidden_size, self.out_dim], self.out_layer_activation) else: if not ps.is_list(self.out_layer_activation): self.out_layer_activation = [self.out_layer_activation ] * len(out_dim) assert len(self.out_layer_activation) == len(self.out_dim) tails = [] for out_d, out_activ in zip(self.out_dim, self.out_layer_activation): tail = net_util.build_fc_model([self.rnn_hidden_size, out_d], out_activ) tails.append(tail) self.model_tails = nn.ModuleList(tails) net_util.init_layers(self, self.init_fn) self.loss_fn = net_util.get_loss_fn(self, self.loss_spec) self.to(self.device) self.train()