コード例 #1
0
def train():

  """
  Performs training and evaluation of ConvNet model. 

  """

  # Set the random seeds for reproducibility
  np.random.seed(42)

  cifar10 = cifar10_utils.get_cifar10('cifar10/cifar-10-batches-py')
  myConvNet = ConvNet(3, 10)
  loss_criterion = nn.CrossEntropyLoss()
  optimizer = optim.Adam(myConvNet.parameters())
  accuracies = {'train': [], 'test': []}
  loss_curve = {'train': [], 'test': []}


  for j in range(FLAGS.max_steps):
    x, y = cifar10['train'].next_batch(FLAGS.batch_size)
    x = torch.from_numpy(x).contiguous()
    y = torch.from_numpy(y).contiguous()
    optimizer.zero_grad()
    outputs = myConvNet(x)
    loss = loss_criterion(outputs, torch.argmax(y, 1))
    loss.backward()
    optimizer.step()


    if j % FLAGS.eval_freq == 0:
      accuracies['train'].append(accuracy(outputs.detach().numpy(), y.detach().numpy()))
      loss_curve['train'].append(loss.detach().numpy())


      x, y = cifar10['test'].images, cifar10['test'].labels
      x = torch.from_numpy(x)
      y = torch.from_numpy(y)
      x = x[:1000]
      y = y[:1000]
      outputs = myConvNet(x)
      loss = loss_criterion(outputs, torch.argmax(y, 1))
      loss_curve['test'].append(loss.detach().numpy())
      print(j)
      print(accuracy(outputs.detach().numpy(), y.detach().numpy()))

      accuracies['test'].append(accuracy(outputs.detach().numpy(), y.detach().numpy()))

  accuracies['train'].append(accuracy(outputs.detach().numpy(), y.detach().numpy()))
  loss_curve['train'].append(loss.detach().numpy())
  x, y = cifar10['test'].images, cifar10['test'].labels
  x = torch.from_numpy(x)
  y = torch.from_numpy(y)
  x= x[:1000]
  y = y[:1000]
  outputs = myConvNet(x)
  loss = loss_criterion(outputs, torch.argmax(y, 1))
  loss_curve['test'].append(loss.detach().numpy())
  print(accuracy(outputs.detach().numpy(), y.detach().numpy()))
  accuracies['test'].append(accuracy(outputs.detach().numpy(), y.detach().numpy()))
  plot_results(accuracies, loss_curve)
コード例 #2
0
def train():
  """
  Performs training and evaluation of ConvNet model. 

  TODO:
  Implement training and evaluation of ConvNet model. Evaluate your model on the whole test set each eval_freq iterations.
  """

  ### DO NOT CHANGE SEEDS!
  # Set the random seeds for reproducibility
  np.random.seed(42)

  ########################
  # PUT YOUR CODE HERE  #
  #######################
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

  cifar10 = cifar10_utils.get_cifar10()
  n_channels = 3
  n_classes = 10
  nr_iterations = FLAGS.max_steps+1
  convnet = ConvNet(n_channels, n_classes).to(device)

  optimizer = optim.Adam(convnet.parameters(), lr=FLAGS.learning_rate)
  loss = nn.CrossEntropyLoss()

  accuracies_test = []
  accuracies_train = []
  losses = []

  for i in range(nr_iterations):
    x, y = cifar10['train'].next_batch(FLAGS.batch_size)  # (batch_size, 3, 32, 32) (batch_size, 10)
    x = torch.from_numpy(x).to(device)
    y = torch.from_numpy(y).type(torch.LongTensor).to(device)
    _, y_target = y.max(1)

    optimizer.zero_grad()
    prediction = convnet(x)

    cross_entropy_loss = loss(prediction, y_target)
    losses.append(cross_entropy_loss.item())
    cross_entropy_loss.backward()
    optimizer.step()

    del x, y_target

    if i % FLAGS.eval_freq == 0:
      x_test, y_test = cifar10['test'].images, cifar10['test'].labels
      x_test = torch.from_numpy(x_test).to(device)
      y_test = torch.from_numpy(y_test).type(torch.LongTensor).to(device)
      pred_test = convnet(x_test)
      acc_test = accuracy(pred_test, y_test)
      acc_train = accuracy(prediction, y)
      accuracies_test.append(acc_test )
      accuracies_train.append(acc_train)
      print('accuracy at step', i, ': ', acc_test)
      del x_test, y_test, pred_test, prediction
コード例 #3
0
def train():
    """
    Performs training and evaluation of ConvNet model.

    Implement training and evaluation of ConvNet model. Evaluate your model on the whole test set each eval_freq iterations.
    """

    ### DO NOT CHANGE SEEDS!
    # Set the random seeds for reproducibility
    np.random.seed(42)

    dataset = cifar10_utils.get_cifar10(DATA_DIR_DEFAULT)
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    a, b, c = dataset['train'].images.shape[1:]
    n_classes = dataset['train'].labels.shape[1]

    cnn = ConvNet(3, n_classes).to(device)
    optimizer = optim.Adam(cnn.parameters(), lr=FLAGS.learning_rate)
    crossentropy = nn.CrossEntropyLoss()

    n_test = dataset['test'].images.shape[0]

    for step in range(FLAGS.max_steps):
        input, labels = dataset['train'].next_batch(FLAGS.batch_size)
        labels = np.argmax(labels, axis=1)
        input, labels = torch.from_numpy(input).to(device), torch.from_numpy(
            labels).long().to(device)
        predictions = cnn.forward(input)

        loss = crossentropy(predictions, labels)
        # clean up old gradients
        cnn.zero_grad()
        loss.backward()
        optimizer.step()

        if (step == FLAGS.max_steps - 1 or step % FLAGS.eval_freq == 0):

            test_loss = []
            test_accuracy = []
            for i in range(0, n_test, FLAGS.batch_size):
                test_input, test_labels = dataset['test'].next_batch(
                    FLAGS.batch_size)
                test_input = torch.from_numpy(test_input).to(device)
                test_labels = torch.from_numpy(np.argmax(
                    test_labels, axis=1)).long().to(device)
                test_prediction = cnn.forward(test_input)
                test_loss.append(
                    crossentropy(test_prediction, test_labels).item())
                test_accuracy.append(accuracy(test_prediction, test_labels))

            sys.stdout = open(
                str(FLAGS.learning_rate) + '_' + str(FLAGS.max_steps) + '_' +
                str(FLAGS.batch_size) + '_' + str(FLAGS.batch_size) +
                'conv.txt', 'a')
            print("{},{:f},{:f}".format(step, np.mean(test_loss),
                                        np.mean(test_accuracy)))
コード例 #4
0
def train():
    """
  Performs training and evaluation of ConvNet model. 

  TODO:
  Implement training and evaluation of ConvNet model. Evaluate your model on the whole test set each eval_freq iterations.
  """

    ### DO NOT CHANGE SEEDS!
    # Set the random seeds for reproducibility
    np.random.seed(42)
    torch.manual_seed(42)

    ########################
    # PUT YOUR CODE HERE  #
    #######################
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    data = cifar10_utils.get_cifar10(FLAGS.data_dir)
    n_inputs = 3 * 32 * 32
    n_classes = 10
    batches_per_epoch = (int)(data['test'].images.shape[0] /
                              FLAGS.batch_size)  # need this for test set
    model = ConvNet(n_inputs, n_classes).to(device)
    loss_fn = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters())
    max_accuracy = 0.0
    start_time = time.perf_counter()
    for step in range(1, FLAGS.max_steps + 1):
        x, y = get_batch(data, 'train', FLAGS.batch_size, device)
        predictions = model.forward(x)
        training_loss = loss_fn(predictions, y.argmax(dim=1))
        optimizer.zero_grad()
        training_loss.backward()
        optimizer.step()
        if step == 1 or step % FLAGS.eval_freq == 0:
            with torch.no_grad():
                test_loss = 0
                test_acc = 0
                for test_batch in range(batches_per_epoch):
                    x, y = get_batch(data, 'test', FLAGS.batch_size, device)
                    predictions = model(x)
                    test_loss += loss_fn(predictions,
                                         y.argmax(dim=1)) / batches_per_epoch
                    test_acc += accuracy(predictions, y) / batches_per_epoch
                if test_acc > max_accuracy:
                    max_accuracy = test_acc
                print(
                    "step %d/%d: training loss: %.3f test loss: %.3f accuracy: %.1f%%"
                    % (step, FLAGS.max_steps, training_loss, test_loss,
                       test_acc * 100))

    time_taken = time.perf_counter() - start_time
    print("Done. Scored %.1f%% in %.1f seconds." %
          (max_accuracy * 100, time_taken))
コード例 #5
0
def train():
    """
  Performs training and evaluation of ConvNet model. 

  TODO:
  Implement training and evaluation of ConvNet model. Evaluate your model on the whole test set each eval_freq iterations.
  """

    ### DO NOT CHANGE SEEDS!
    # Set the random seeds for reproducibility
    np.random.seed(42)

    ########################
    # PUT YOUR CODE HERE  #
    #######################
    ce_loss = nn.CrossEntropyLoss()
    convnet = ConvNet(3, 10)
    optimizer = optim.Adam(convnet.parameters(), lr=FLAGS.learning_rate)

    c10 = cifar10_utils.get_cifar10(FLAGS.data_dir)
    test_data = c10['test'].images[:32]
    test_data = torch.tensor(test_data)
    targets = c10['test'].labels[:32]

    acc_values = []
    loss_values = []

    for i in range(FLAGS.max_steps):  #range(FLAGS.max_steps)
        x, y = c10['train'].next_batch(FLAGS.batch_size)
        y = y.argmax(axis=1)
        x = torch.tensor(x)
        y = torch.tensor(y)

        optimizer.zero_grad()
        out = convnet(x)
        loss = ce_loss(out, y)
        loss.backward()
        optimizer.step()
        loss_values.append(loss.item())

        # evaluate
        if i % FLAGS.eval_freq == 0:
            with torch.no_grad():
                predictions = convnet(test_data).detach().numpy()
                acc = accuracy(predictions, targets)
                print('acc', acc, 'loss', loss.item())
                acc_values.append(acc)

    # save loss and accuracy to file
    with open('accuracy_cnn.txt', 'a') as f_acc:
        print(acc_values, file=f_acc)
    with open('loss_cnn.txt', 'a') as f_loss:
        print(loss_values, file=f_loss)
コード例 #6
0
def train():
    """
  Performs training and evaluation of ConvNet model. 

  TODO:
  Implement training and evaluation of ConvNet model. Evaluate your model on the whole test set each eval_freq iterations.
  """

    ### DO NOT CHANGE SEEDS!
    # Set the random seeds for reproducibility
    np.random.seed(42)
    print(device)
    # Get Images
    cifar10 = cifar10_utils.read_data_sets(FLAGS.data_dir)
    # Create MLP Instance
    trainDataSet = cifar10['train']
    testDataSet = cifar10['test']

    mlp = ConvNet(cifar10['train'].images[0].shape[2],
                  np.shape(cifar10['test'].labels)[1]).to(device)
    loss = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(mlp.parameters(), lr=FLAGS.learning_rate)
    aggregate_counter = 0
    for i in range(FLAGS.max_steps):
        # np.random.shuffle(cifar10['train'])
        accuracies_train = []
        loss_train = []
        counter = 0
        batch = trainDataSet.next_batch(FLAGS.batch_size)
        x = torch.from_numpy(batch[0]).to(device)
        # x = torch.from_numpy(x.reshape(x.shape[0], x.shape[2], x.shape[3], x.shape[1])).to(device)
        y_numpy = batch[1]
        y = torch.from_numpy(batch[1]).to(device)
        optimizer.zero_grad()
        prob = mlp(x)
        prob_num = prob.cpu().clone().detach().numpy()
        predictions = (prob_num == prob_num.max(axis=1)[:, None]).astype(int)
        current_accuracy = accuracy(predictions, y_numpy)
        print(current_accuracy)
        accuracies_train.append(current_accuracy)

        current_loss = loss(prob, torch.max(y, 1)[1])
        current_loss.backward()
        optimizer.step()
        current_loss = current_loss.cpu().detach().numpy()
        loss_train.append(current_loss)
        writer.add_scalar('Train/Loss', current_loss, i)
        writer.add_scalar('Train/Accuracy', current_accuracy, i)
        if i % FLAGS.eval_freq == 0:
            test_dataset(mlp, testDataSet, loss, i)
        aggregate_counter += counter
        print("ITERATION FINISHED", i, " ", np.mean(accuracies_train))
    test_dataset(mlp, testDataSet, loss, FLAGS.max_steps + 1)
コード例 #7
0
def train():
  """
  Performs training and evaluation of ConvNet model.
  """

  ### DO NOT CHANGE SEEDS!
  # Set the random seeds for reproducibility
  np.random.seed(42)

  cifar10 = cifar10_utils.get_cifar10('cifar10/cifar-10-batches-py')
  x, y = cifar10['train'].next_batch(FLAGS.batch_size)
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

  n_channels = np.size(x, 1)
  net = ConvNet(n_channels, 10).to(device)
  crossEntropy = nn.CrossEntropyLoss()
  optimizer = torch.optim.Adam(net.parameters(), lr=FLAGS.learning_rate)

  loss_list = []
  accuracy_list = []
  test_eval_list = []

  for i in range(FLAGS.max_steps):
      x = Variable(torch.from_numpy(x), requires_grad = True).to(device)
      predictions = net(x).to(device)
      numpy_predictions = predictions.cpu().data[:].numpy()

      label_index = torch.LongTensor(np.argmax(y, axis = 1)).to(device)
      loss = crossEntropy(predictions, label_index)

      if i % FLAGS.eval_freq == 0:
          current_accuracy = accuracy(numpy_predictions, y)
          current_test_accuracy = test(net)
          current_loss = loss.cpu().data.numpy()

          loss_list.append(current_loss)
          accuracy_list.append(current_accuracy)
          test_eval_list.append(current_test_accuracy)

          print ('Training epoch %d out of %d. Loss %.3f, Train accuracy %.3f, Test accuracy %.3f' % (i, FLAGS.max_steps, current_loss, current_accuracy, current_test_accuracy))


      optimizer.zero_grad()
      loss.backward()
      optimizer.step()

      x, y = cifar10['train'].next_batch(FLAGS.batch_size)

  # save model
  torch.save(net, MODEL_DIRECTORY + CNN_PYTORCH_FILE)
  test_accuracy = test(net)
  print('Test accuracy %.3f' % (test_accuracy))
コード例 #8
0
    def fit(**hyperparameter):
        model = ConvNet(3, 10).to(device)

        loss_module = nn.CrossEntropyLoss()
        optimizer = hyperparameter['optimizer'](
            model.parameters(), lr=hyperparameter['learning_rate'])

        accuracies = dict(train_scores=list(), val_scores=list())
        losses = dict(train_scores=list(), val_scores=list())
        for i in range(FLAGS.max_steps):
            x, y = train_data.next_batch(FLAGS.batch_size)

            x, y = torch.from_numpy(x).float().to(device), torch.from_numpy(
                y).long().to(device)

            preds = model(x)
            preds = preds.squeeze(dim=1)

            if i % FLAGS.eval_freq == FLAGS.eval_freq - 1:
                if i % FLAGS.eval_freq == FLAGS.eval_freq - 1:
                    x_train, y_train = train_data.next_batch(2000)
                    x_test, y_test = test_data.next_batch(2000)
                    evaluate(model, x_train, y_train, x_test, y_test,
                             loss_module, accuracies, losses)

            _, y = torch.max(y, dim=1)
            loss = loss_module(preds, y)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        plot_history(accuracies, "Accuracies", model_name="ConvNet")
        plot_history(losses,
                     "Losses",
                     title="Train and Validation Losses of ",
                     model_name="ConvNet")

        # Test
        with torch.no_grad():
            x, y = test_data.next_batch(2000)

            x, y = torch.from_numpy(x).float().to(device), torch.from_numpy(
                y).long().to(device)

            preds = model(x)
            preds = preds.squeeze(dim=1)

            print("Test Accuracy: ", accuracy(preds, y))
            return accuracy(preds, y)
コード例 #9
0
def train():
  """
  Performs training and evaluation of ConvNet model. 

  TODO:
  Implement training and evaluation of ConvNet model. Evaluate your model on the whole test set each eval_freq iterations.
  """

  ### DO NOT CHANGE SEEDS!
  # Set the random seeds for reproducibility
  np.random.seed(42)

  ########################
  # PUT YOUR CODE HERE  #
  #######################
  if FLAGS.batch_size:
    batch_size = int(FLAGS.batch_size)

  cifar10 = cifar10_utils.get_cifar10();
  convNet = ConvNet(3, 10);
  print(convNet);
  lossfunc = nn.CrossEntropyLoss();
  optimizer = torch.optim.Adam(convNet.parameters(),lr=LEARNING_RATE_DEFAULT)
  
  cifar10_train = cifar10['train'];  
  # get all test image labels and features:
  cifar10_test = cifar10['test']; 
  
  while (cifar10_train.epochs_completed < 10):
      x, y = cifar10_train.next_batch(batch_size);
      x_test, y_target = cifar10_test.next_batch(batch_size);
      x = torch.autograd.Variable(torch.from_numpy(x));
      y = torch.autograd.Variable(torch.from_numpy(y).long());
      x_test = torch.autograd.Variable(torch.from_numpy(x_test));
      
      #x_test = x_test.reshape((batch_size, -1));
      optimizer.zero_grad();
      out = convNet(x);
      
      loss = lossfunc(out,torch.max(y, 1)[1]);
      loss.backward();
      optimizer.step();
      
      y_test = convNet(x_test);
      rate = accuracy(y_test, y_target)
      
      #print('loss: ', crossentropy_loss);
      print("Accuracy:", rate)
コード例 #10
0
def train():
  """
  Performs training and evaluation of ConvNet model. 

  TODO:
  Implement training and evaluation of ConvNet model. Evaluate your model on the whole test set each eval_freq iterations.
  """
  if torch.cuda.is_available():  
    dev = "cuda:0" 
  else:  
    dev = "cpu"  
  device = torch.device(dev) 
  ### DO NOT CHANGE SEEDS!
  # Set the random seeds for reproducibility
  np.random.seed(42)

  ########################
  # PUT YOUR CODE HERE  #
  #######################

  """
  Initialize data module
  """
  cifar10=cifar10_utils.get_cifar10(DATA_DIR_DEFAULT)
  x, y = cifar10['train'].next_batch(1)
  x_test, y_test = cifar10['test'].next_batch(10000)

  x_test = torch.tensor(x_test)
  y_test = torch.tensor(y_test)

  """
  initialize the network
  """
  network = ConvNet(x.shape[1], y.shape[1]).to(device)
  crossEntropy = nn.CrossEntropyLoss()
  
  optimizer = None

  optimizer = torch.optim.Adam(network.parameters(), lr=FLAGS.learning_rate, amsgrad=True)
  store_loss = None
  for i in range(FLAGS.max_steps):
    x, y = cifar10['train'].next_batch(FLAGS.batch_size)
    x = torch.tensor(x).to(device)
    y = torch.LongTensor(y).to(device)
    prediction = network.forward(x)

    loss = crossEntropy.forward(prediction, torch.max(y, 1)[1])

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    store_loss = loss.cpu()
    del loss
    del x
    del y
    del prediction
    prediction_collection = None
    if i%FLAGS.eval_freq == 0:
      with torch.no_grad():
        print('Loss after '+str(i)+' steps '+str(store_loss))
        for j in range(100):
          test_data = x_test[j*100:j*100+100].to(device)
          prediction = network.forward(test_data)
          prediction = nn.functional.softmax(prediction)
          del test_data
          if j == 0:
            prediction_collection = prediction
          else:
            prediction_collection = torch.cat((prediction_collection, prediction), 0)
          del prediction
        print('Accuracy after '+ str(i) +' steps ' + str(accuracy(prediction_collection, y_test)))

  prediction_collection = None
  with torch.no_grad():
    print('final Loss',store_loss)
    for j in range(100):
      test_data = x_test[j*100:j*100+100].to(device)
      prediction = network.forward(test_data).cpu()
      prediction = nn.functional.softmax(prediction)
      if j == 0:
        prediction_collection = prediction
      else:
        prediction_collection = torch.cat((prediction_collection, prediction), 0)
      del prediction
    print('Final accuracy')
    print(accuracy(prediction_collection, y_test))
コード例 #11
0
def train():
  """
  Performs training and evaluation of ConvNet model.

  TODO:
  Implement training and evaluation of ConvNet model. Evaluate your model on the whole test set each eval_freq iterations.
  """

  ### DO NOT CHANGE SEEDS!
  # Set the random seeds for reproducibility
  np.random.seed(42)
  torch.manual_seed(42)

  ########################
  # PUT YOUR CODE HERE  #
  #######################

  # will be used to compute accuracy and loss for the whole train and test sets
  batch_size_acc = 500
  data_accuracy_loss = cifar10_utils.get_cifar10(data_dir=FLAGS.data_dir)
  X_train_acc, y_train_acc = data_accuracy_loss['train'].images, data_accuracy_loss['train'].labels
  X_test_acc, y_test_acc = data_accuracy_loss['test'].images, data_accuracy_loss['test'].labels
  steps_train = int(X_train_acc.shape[0] / batch_size_acc)
  steps_test = int(X_test_acc.shape[0] / batch_size_acc)
  #


  data = cifar10_utils.get_cifar10(data_dir = FLAGS.data_dir)

  n_classes = data['train'].labels.shape[1]
  n_inputs = data['train'].images.shape[1]*data['train'].images.shape[2]*data['train'].images.shape[3]
  batch_size = FLAGS.batch_size
  m_steps = FLAGS.max_steps
  alpha = FLAGS.learning_rate



  cnn = ConvNet(3, 10)

  criterion = nn.CrossEntropyLoss()
  optimizer = torch.optim.Adam(cnn.parameters(), lr=alpha)


  x_ax = []
  acc_train = []
  acc_test = []
  loss_train = []
  loss_test = []

  for step in range(m_steps):

        x, y = data['train'].next_batch(batch_size)
        n = x.shape
        x = torch.from_numpy(x)

        y_pred = cnn(x)
        labels = torch.LongTensor(y)

        loss = criterion(y_pred, torch.max(labels, 1)[1])
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()



        if step % FLAGS.eval_freq == 0:
            print('Iteration ',step)

            x_ax.append(step)


            acc_ = []
            loss_ = []
            for i in range(steps_train):
                x_acc = X_train_acc[i * batch_size_acc:(i + 1) * batch_size_acc]
                y_acc = y_train_acc[i * batch_size_acc:(i + 1) * batch_size_acc]
                x_acc = torch.from_numpy(x_acc)
                y_acc = torch.LongTensor(y_acc)

                y_pred = cnn.forward(x_acc)
                acc_.append(accuracy(y_pred, y_acc))
                loss_.append(float(criterion(y_pred, torch.max(y_acc, 1)[1])))

            acc_train.append(np.mean(acc_))
            loss_train.append(np.mean(loss_))

            acc_ = []
            loss_ = []
            for i in range(steps_test):
                x_acc = X_test_acc[i * batch_size_acc:(i + 1) * batch_size_acc]
                y_acc = y_test_acc[i * batch_size_acc:(i + 1) * batch_size_acc]
                x_acc = torch.from_numpy(x_acc)
                y_acc = torch.LongTensor(y_acc)

                y_pred = cnn.forward(x_acc)
                acc_.append(accuracy(y_pred, y_acc))
                loss_.append(float(criterion(y_pred, torch.max(y_acc, 1)[1])))

            acc_test.append(np.mean(acc_))
            loss_test.append(np.mean(loss_))


            print('Max train accuracy ', max(acc_train))
            print('Max test accuracy ', max(acc_test))
            print('Min train loss ', min(loss_train))
            print('Min test loss ', min(loss_test))


  x_ax = np.array(x_ax)
  acc_test = np.array(acc_test)
  acc_train = np.array(acc_train)
  loss_test = np.array(loss_test)
  loss_train = np.array(loss_train)

  print('Max train accuracy ', max(acc_train))
  print('Max test accuracy ', max(acc_test))
  print('Min train loss ', min(loss_train))
  print('Min test loss ', min(loss_test))

  fig = plt.figure()
  ax = plt.axes()

  plt.title("CNN Pytorch. Accuracy curves")
  ax.plot(x_ax, acc_train, label='train');
  ax.plot(x_ax, acc_test, label='test');
  ax.set_xlabel('Step');
  ax.set_ylabel('Accuracy');
  plt.legend();
  plt.savefig('accuracy_cnn.jpg')

  fig = plt.figure()
  ax = plt.axes()
  plt.title("CNN Pytorch. Loss curves")
  ax.plot(x_ax, loss_train, label='train');
  ax.plot(x_ax, loss_test, label='train');
  ax.set_xlabel('Step');
  ax.set_ylabel('Loss');
  ax.set_ylim(top=10, bottom=0)
  plt.legend();
  plt.savefig('loss_cnn.jpg')
コード例 #12
0
def train():
    """
  Performs training and evaluation of ConvNet model.

  TODO:
  Implement training and evaluation of ConvNet model. Evaluate your model on the whole test set each eval_freq iterations.
  """

    ### DO NOT CHANGE SEEDS!
    # Set the random seeds for reproducibility
    np.random.seed(42)
    epoch_num = 3
    ########################
    # PUT YOUR CODE HERE  #
    #######################
    model = ConvNet(3, 10)

    #Obtain Dataset
    train_dataset = cifar10_utils.get_cifar10()['train']
    val_dataset = cifar10_utils.get_cifar10()['validation']
    test_dataset = cifar10_utils.get_cifar10()['test']

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=BATCH_SIZE_DEFAULT,
                                               drop_last=True)

    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters())
    for epoch in range(epoch_num):
        model.train()
        losses = []
        accs = []
        for i_iter in range(
                int(train_dataset.num_examples / BATCH_SIZE_DEFAULT)):
            images, labels = train_dataset.next_batch(BATCH_SIZE_DEFAULT)
            images, labels = torch.tensor(images), torch.tensor(
                labels, dtype=torch.long)
            pred = model(images)
            labels = torch.argmax(labels, dim=1)
            loss = criterion(pred, labels)
            pred_result = torch.argmax(pred, dim=1)
            acc = accuracy(pred_result, labels)
            accs.append(acc)
            model.zero_grad()
            loss.backward()
            optimizer.step()
            losses.append(loss)
            if i_iter % 100 == 0:
                msg = 'Epoch:[{}/{}] Iter: [{}/{}], Loss: {: .6f}, ACC:[{: .6f}]'.format(
                    epoch, epoch_num, i_iter,
                    int(train_dataset.num_examples / BATCH_SIZE_DEFAULT),
                    sum(losses) / len(losses),
                    sum(accs) / len(accs))
                print(msg)
                with open('./log.txt', 'a') as f:
                    f.write(msg)
                    f.write('\n')
            msg_epoch = '--------Epoch: [{}/{}], Loss: {: .6f}, ACC:[{: .6f}]-------'.format(
                epoch, epoch_num,
                sum(losses) / len(losses),
                sum(accs) / len(accs))
            print(msg_epoch)
            with open('./log.txt', 'a') as f:
                f.write(msg)
                f.write('\n')
コード例 #13
0
def train():
  """
  Performs training and evaluation of ConvNet model.

  TODO:
  Implement training and evaluation of ConvNet model. Evaluate your model on the whole test set each eval_freq iterations.
  """

  ### DO NOT CHANGE SEEDS!
  # Set the random seeds for reproducibility
  np.random.seed(42)
  torch.manual_seed(42)
  # Device configuration
  use_cuda = torch.cuda.is_available()
  if use_cuda:
      print('Running in GPU model')

  device = torch.device('cuda' if use_cuda else 'cpu')
  dtype = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor
  # load dataset
  cifar10 = cifar10_utils.get_cifar10(FLAGS.data_dir)
  # get batches
  batches = []

  # initializing loss and accuracy arrays
  accuracies = []
  losses = []

  for i in range(FLAGS.max_steps):
      x, y = cifar10['train'].next_batch(FLAGS.batch_size) # (batch_size, 3, 32, 32) (batch_size, 10)
      batches.append((x,y))
  # get output size
  out_size = batches[-1][1].shape[1]
  # get intput size
  in_size = batches[-1][0].shape[1]
  # initialize network
  net = ConvNet(in_size, out_size).to(device)
  net = nn.DataParallel(net)
  # intialize loss function
  criterion = nn.CrossEntropyLoss()
  optimizer = torch.optim.Adam(net.parameters(), lr=FLAGS.learning_rate)
   # make steps
  for s in range(FLAGS.max_steps):
    x,t = batches[s]
    # Forward pass
    y = net(torch.from_numpy(x).type(dtype))
    t = torch.from_numpy(t).type(dtype)
    t = torch.max(t,1)[1]
    loss = criterion(y, t)
    losses.append(loss.cpu().detach().numpy())


    # Backward and optimize
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    if s % FLAGS.eval_freq == 0:
        x, t = cifar10['test'].images, cifar10['test'].labels
        y = net(torch.from_numpy(x).type(dtype))
        acc = accuracy(y.cpu().detach().numpy(),t)
        accuracies.append(acc)
        print('accuracy at step',s,': ',acc)
コード例 #14
0
def train():
    """
  Performs training and evaluation of ConvNet model. 

  TODO:
  Implement training and evaluation of ConvNet model. Evaluate your model on the whole test set each eval_freq iterations.
  """

    ### DO NOT CHANGE SEEDS!
    # Set the random seeds for reproducibility
    np.random.seed(42)

    with open("jobs/status.txt", "w") as f:
        f.write("Start training\n")

    ## Prepare all functions
    output_dir = FLAGS.output_dir
    if not os.path.isdir(output_dir):
        os.makedirs(output_dir)

    learning_rate = FLAGS.learning_rate
    max_steps = FLAGS.max_steps
    batch_size = FLAGS.batch_size
    eval_freq = FLAGS.eval_freq
    data_dir = FLAGS.data_dir
    optimizer = FLAGS.optimizer

    # Obtain dataset
    dataset = cifar10_utils.get_cifar10(data_dir)
    n_channels = dataset['train'].images[0].shape[0]
    n_classes = dataset['train'].labels[0].shape[0]
    n_test = dataset['test'].images.shape[0]

    # Initialise VGG network
    dev = 'cuda' if torch.cuda.is_available() else 'cpu'
    device = torch.device(dev)
    print("Device: " + dev)
    net = ConvNet(n_channels, n_classes).to(device)
    loss_fn = F.cross_entropy
    print("Network architecture:\n\t{}\nLoss module:\n\t{}".format(
        str(net), str(loss_fn)))

    # Evaluation vars
    train_loss = []
    gradient_norms = []
    train_acc = []
    test_acc = []
    iteration = 0

    # Training
    optimizer = optim.Adam(net.parameters(), lr=learning_rate)
    while iteration < max_steps:
        iteration += 1

        # Sample a mini-batch
        x, y = dataset['train'].next_batch(batch_size)
        x = torch.from_numpy(x).to(device)
        y = torch.from_numpy(y).argmax(dim=1).long().to(device)

        # Forward propagation
        prediction = net.forward(x)
        loss = loss_fn(prediction, y)
        acc = accuracy(prediction, y)
        train_acc.append((iteration, acc))
        train_loss.append((iteration, loss))

        # Backprop
        optimizer.zero_grad()
        loss.backward()

        # Weight update in linear modules
        optimizer.step()
        norm = 0
        for params in net.parameters():
            norm += params.reshape(-1).pow(2).sum()
        gradient_norms.append((iteration, norm.reshape(-1)))

        # Evaluation
        with torch.no_grad():
            if iteration % eval_freq == 0:
                x = torch.from_numpy(dataset['test'].images).to(device)
                y = torch.from_numpy(
                    dataset['test'].labels).argmax(dim=1).long().to(device)
                prediction = net.forward(x)
                acc = accuracy(prediction, y)
                test_acc.append((iteration, acc))
                print("Iteration: {}\t\tTest accuracy: {}".format(
                    iteration, acc))

    # Save raw output
    now = datetime.datetime.now()
    time_stamp = "{}{}{}{}{}".format(now.year, now.month, now.day, now.hour,
                                     now.minute)
    net_name = "cnn"
    if not os.path.isdir(os.path.join(output_dir, net_name, time_stamp)):
        os.makedirs(os.path.join(output_dir, net_name, time_stamp))
    metrics = {
        "train_loss": train_loss,
        "gradient_norms": gradient_norms,
        "train_acc": train_acc,
        "test_acc": test_acc
    }
    raw_data = {"net": net, "metrics": metrics}
    pickle.dump(
        raw_data,
        open(os.path.join(output_dir, net_name, time_stamp, "raw_data"), "wb"))

    # Save plots
    # Loss
    fig, ax = plt.subplots()
    iter = [i for (i, q) in train_loss]
    loss = [q for (i, q) in train_loss]
    ax.plot(iter, loss)
    ax.set(xlabel='Iteration',
           ylabel='Loss (log)',
           title='Batch training loss')
    ax.set_yscale('log')
    ax.grid()
    fig.savefig(os.path.join(output_dir, net_name, time_stamp, "loss.png"))
    # gradient norm
    fig, ax = plt.subplots()
    iter = [i for (i, q) in gradient_norms]
    norm = [q for (i, q) in gradient_norms]
    ax.plot(iter, norm)
    ax.set(xlabel='Iteration', ylabel='Norm', title='Gradient norm')
    ax.grid()
    fig.savefig(
        os.path.join(output_dir, net_name, time_stamp, "gradient_norm.png"))
    # accuracies
    fig, ax = plt.subplots()
    iter = [i for (i, q) in train_acc]
    accu = [q for (i, q) in train_acc]
    ax.plot(iter, accu, label='Train')
    iter = [i for (i, q) in test_acc]
    accu = [q for (i, q) in test_acc]
    ax.plot(iter, accu, label='Test')
    ax.set(xlabel='Iteration',
           ylabel='Accuracy',
           title='Train and test accuracy')
    ax.legend()
    ax.grid()
    fig.savefig(os.path.join(output_dir, net_name, time_stamp, "accuracy.png"))
コード例 #15
0
def train():
    """
    Performs training and evaluation of ConvNet model.
  
    TODO:
    Implement training and evaluation of ConvNet model. Evaluate your model on the whole test set each eval_freq iterations.
    """

    ### DO NOT CHANGE SEEDS!
    # Set the random seeds for reproducibility
    np.random.seed(42)
    torch.manual_seed(42)

    # select which device to train the model on
    device = "cuda:0" if torch.cuda.is_available() else "cpu"
    # compute the input size of the MLP
    input_size, n_classes = 3 * 32 * 32, 10

    # if no pretrained model is passed to the commandline the convnet model will be initialized
    if FLAGS.model == "custom":
        model = ConvNet(3, n_classes).to(device)
    else:
        # check if the requested pretrained is available
        assert FLAGS.model in pretrained_dict, "Model not available in pre_trained dict, given: {}, available: {}".format(
            FLAGS.model, pretrained_dict.keys())
        model = pretrained_dict[FLAGS.model](pretrained=True)

        # image transforms needed to be alligned with the type of input the pretrained model is used to
        normalize = T.Normalize(mean=[0.485, 0.456, 0.406],
                                std=[0.229, 0.224, 0.225])
        resize = T.Resize(256)
        centerCrop = T.CenterCrop(224)

        # break out the last layer and add a linear layer that has 10 outputs instead of 1000
        layers = []
        first_linear = False
        for child in model.children():
            if list(child.children()) == []:
                if isinstance(child, nn.Linear) and not first_linear:
                    layers.append(nn.Flatten())
                    first_linear = True
                layers.append(child)
            else:
                for grandchild in child.children():
                    if isinstance(grandchild, nn.Linear) and not first_linear:
                        layers.append(nn.Flatten())
                        first_linear = True
                    layers.append(grandchild)
        model = nn.Sequential(
            *layers[:-1],
            nn.Linear(in_features=layers[-1].in_features, out_features=10))
        model.to(device)

        # freeze the layers that are pretrained
        for child in list(model.children())[:-1]:
            for param in child.parameters():
                param.requires_grad = False

    # define the dataset, loss function and optimizer
    dataset = cifar10_utils.get_cifar10(FLAGS.data_dir)
    loss_fn = torch.nn.CrossEntropyLoss().to(device)
    optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad,
                                        model.parameters()),
                                 lr=FLAGS.learning_rate)

    for step in range(FLAGS.max_steps):
        X_train, y_train = dataset['train'].next_batch(FLAGS.batch_size)
        optimizer.zero_grad()

        # from to normalize the data for pretrained model https://discuss.pytorch.org/t/how-to-efficiently-normalize-a-batch-of-tensor-to-0-1/65122
        if FLAGS.model != "custom":
            X_train, y_train = torch.tensor(X_train).float(), torch.tensor(
                y_train).float().to(device)

            X_train -= X_train.min(1, keepdim=True)[0]
            X_train /= X_train.max(1, keepdim=True)[0]

            X_train = torch.tensor([
                normalize(T.ToTensor()(centerCrop(resize(
                    T.ToPILImage()(x))))).numpy() for x in X_train
            ]).to(device)
        else:
            # move to correct device and shape for MLP
            X_train, y_train = torch.tensor(X_train).float().to(
                device), torch.tensor(y_train).float().to(device)

        predictions = model(X_train)
        train_loss = loss_fn(predictions, y_train.argmax(1).long())
        train_loss.backward()
        optimizer.step()

        # add the loss and accuracy to the lists for plotting
        train_overall_loss.append(train_loss.cpu().detach().sum())
        train_overall_accuracy.append(
            accuracy(predictions.cpu().detach(),
                     y_train.cpu().detach()))
        train_x_axis.append(step)

        # test the model when eval freq is reached or if it is the last step
        if not step % FLAGS.eval_freq or step + 1 == FLAGS.max_steps:
            model.eval()
            test_accuracies, test_losses_list = [], []

            # test batchwise since it doesnot fit my gpu
            for X_test, y_test in cifar_test_generator(dataset):
                if FLAGS.model != "custom":
                    X_test, y_test = torch.tensor(X_test).float(
                    ), torch.tensor(y_test).float().to(device)

                    X_test -= X_test.min(1, keepdim=True)[0]
                    X_test /= X_test.max(1, keepdim=True)[0]

                    X_test = torch.tensor([
                        normalize(T.ToTensor()(centerCrop(
                            resize(T.ToPILImage()(x))))).numpy()
                        for x in X_test
                    ]).to(device)
                else:
                    # move to correct device and shape for MLP
                    X_test, y_test = torch.tensor(X_test).float().to(
                        device), torch.tensor(y_test).float().to(device)

                predictions = model(X_test)
                test_loss = loss_fn(predictions, y_test.argmax(1).long())
                test_accuracy = accuracy(predictions, y_test)

                # add the values to compute the average loss and accuracy for the entire testset
                test_accuracies.append(test_accuracy.cpu().detach())
                test_losses_list.append(test_loss.cpu().detach().sum())

            print(
                "[{:5}/{:5}] Train loss {:.5f} Test loss {:.5f} Test accuracy {:.5f}"
                .format(step, FLAGS.max_steps, train_loss, test_loss,
                        sum(test_accuracies) / len(test_accuracies)))
            test_overall_accuracy.append(
                sum(test_accuracies) / len(test_accuracies))
            test_overall_loss.append(
                sum(test_losses_list) / len(test_losses_list))
            test_x_axis.append(step)
            model.train()

            # freeze the pretrained layers
            if FLAGS.model != "custom":
                for child in list(model.children())[:-1]:
                    for param in child.parameters():
                        param.requires_grad = False

    plt.plot(train_x_axis, train_overall_loss, label="Avg Train loss")
    plt.plot(test_x_axis, test_overall_loss, label="Avg Test loss")
    plt.legend()
    plt.savefig("convnet_loss_curve")
    plt.show()

    plt.plot(train_x_axis,
             train_overall_accuracy,
             label="Train batch accuracy")
    plt.plot(test_x_axis, test_overall_accuracy, label="Test set accuracy")
    plt.legend()
    plt.savefig("convnet_accuracy_curve")
    plt.show()
コード例 #16
0
def train():
    """
  Performs training and evaluation of ConvNet model. 

  TODO:
  Implement training and evaluation of ConvNet model. Evaluate your model on the whole test set each eval_freq iterations.
  """

    ### DO NOT CHANGE SEEDS!
    # Set the random seeds for reproducibility
    np.random.seed(42)

    # Load data
    cifar10 = cifar10_utils.get_cifar10(data_dir=FLAGS.data_dir,
                                        one_hot=False,
                                        validation_size=5000)
    train_set = cifar10['train']
    test_set = cifar10['test']
    val_set = cifar10['validation']

    # Initialize model
    n_channels = len(train_set.images[0].shape)
    n_classes = train_set.labels.max() + 1

    # set device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    model = ConvNet(n_channels, n_classes)
    model = model.to(device)
    model = nn.DataParallel(model)

    cross_entropy = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=FLAGS.learning_rate)

    total_loss = 0
    losses = []

    val_acc = []
    train_acc = []
    for i in range(FLAGS.max_steps + 1):

        # prepare batch
        x, y = train_set.next_batch(FLAGS.batch_size)
        x, y = torch.tensor(x), torch.tensor(y, dtype=torch.long)
        x, y = x.to(device), y.to(device)

        # forward pass
        out = model(x)
        loss = cross_entropy(out, y)
        total_loss += loss.item()

        # keep track of training accuracy
        train_acc.append(accuracy(out, y))

        # backward pass
        model.zero_grad()
        loss.backward()
        optimizer.step()

        if i % FLAGS.eval_freq == 0 and i != 0:
            with torch.no_grad():
                val_inputs = test_set.images
                val_inputs = torch.tensor(val_inputs)
                val_inputs = val_inputs.to(device)

                pred = model(val_inputs)
                targ = torch.tensor(test_set.labels)
                targ = targ.to(device)

                acc = accuracy(pred, targ)

                losses.append(total_loss)
                val_acc.append(acc)

                print()
                print("- - - - - - - - - -")
                print('- STEPS:\t\t\t', i)
                print('- TRAIN ACC: \t\t\t', np.array(train_acc).mean())
                print('- VALIDATION ACC:\t\t', acc)
                print("- - - - - - - - - -")

                train_acc = []
                total_loss = 0

    print("Loss over time: \t", losses)
    print("Val acc over time: \t", val_acc)

    with open('cnn_data.dill', 'wb') as f:
        dill.dump({'train_loss': losses, 'val_acc': val_acc}, f)
コード例 #17
0
def train():
    """
  Performs training and evaluation of ConvNet model. 

  TODO:
  Implement training and evaluation of ConvNet model. Evaluate your model on the whole test set each eval_freq iterations.
  """

    ### DO NOT CHANGE SEEDS!
    # Set the random seeds for reproducibility
    np.random.seed(42)

    ########################
    # PUT YOUR CODE HERE  #
    #######################
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    cifar10 = cifar10_utils.get_cifar10(FLAGS.data_dir)
    x, y = cifar10['train'].next_batch(FLAGS.batch_size)
    x = torch.from_numpy(x).float().to(device)
    y = torch.from_numpy(y).float().to(device)
    n_classes = y.shape[1]
    n_channels = x.shape[1]
    CNN = ConvNet(n_channels, n_classes)
    CNN.to(device)
    if OPTIMIZER_DEFAULT == 'SGD':
        optimizer = optim.SGD(CNN.parameters())
    elif OPTIMIZER_DEFAULT == 'ADAM':
        optimizer = optim.Adam(CNN.parameters())
    else:
        print('Try SGD or ADAM...')
    loss = nn.CrossEntropyLoss()
    l_list = list()
    t_list = list()
    train_acc = list()
    test_acc = list()
    iterations = list()
    print('\nTraining...')
    for i in range(FLAGS.max_steps):
        optimizer.zero_grad()
        s_pred = CNN(x)
        f_loss = loss(s_pred, y.argmax(dim=1))
        f_loss.backward()
        optimizer.step()
        if i % FLAGS.eval_freq == 0:
            iterations.append(i + 1)
            l_list.append(round(f_loss.item(), 3))
            train_acc.append(accuracy(s_pred, y))
            test_size = cifar10['test'].labels.shape[0]
            iter_num = 10
            tmp_size = int(test_size / iter_num)
            tmp_correct = 0
            tmp_loss = 0
            for j in range(iter_num):
                t_x, t_y = cifar10['test'].next_batch(tmp_size)
                t_x = torch.from_numpy(t_x).float().to(device)
                t_y = torch.from_numpy(t_y).float().to(device)
                t_pred = CNN(t_x)
                tmp_loss += loss(t_pred, t_y.argmax(dim=1)).item()
                tmp_correct += accuracy(t_pred, t_y) * tmp_size
            test_acc.append(tmp_correct / test_size)
            t_list.append(round(tmp_loss / iter_num, 3))
        x, y = cifar10['train'].next_batch(FLAGS.batch_size)
        x = torch.from_numpy(x).float().to(device)
        y = torch.from_numpy(y).float().to(device)
    print('Done!\n')
    print('Training Losses:', l_list)
    print('Test Losses:', t_list)
    print('Training Accuracies:', train_acc)
    print('Test Accuracies:', test_acc)
    print('Best Test Accuracy:', max(test_acc))
    fig, axs = plt.subplots(1, 2, figsize=(10, 5))
    axs[0].plot(iterations, train_acc, iterations, test_acc)
    axs[0].set_xlabel('Iteration')
    axs[0].set_ylabel('Accuracy')
    axs[0].legend(('train', 'test'))
    axs[1].plot(iterations, l_list, iterations, t_list)
    axs[1].set_xlabel('Iteration')
    axs[1].set_ylabel('Loss')
    axs[1].legend(('train', 'test'))
    fig.tight_layout()
    plt.show()
コード例 #18
0
def train():
    """
    Performs training and evaluation of ConvNet model.

    TODO:
    Implement training and evaluation of ConvNet model. Evaluate your model on the whole test set each eval_freq iterations.
    """

    ### DO NOT CHANGE SEEDS!
    # Set the random seeds for reproducibility
    np.random.seed(42)

    ########################
    # PUT YOUR CODE HERE  #
    #######################

    if FLAGS.data_dir:
        DATA_DIR_DEFAULT = FLAGS.data_dir

    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

    batch_size = FLAGS.batch_size
    learning_rate = FLAGS.learning_rate

    cifar_data = cifar10_utils.get_cifar10(DATA_DIR_DEFAULT)

    train_data = cifar_data['train']
    test_data = cifar_data['test']

    input_channels = train_data.images.shape[1]
    n_classes = train_data.labels.shape[1]

    criterion = nn.CrossEntropyLoss()
    model = ConvNet(input_channels, n_classes).to(device)

    optimizer = optim.Adam(model.parameters(), lr=learning_rate)

    # Train and Test losses
    losses = [[], []]
    # Train and Test accuracies
    accuracies = [[], []]

    # True iteration for plotting
    iterations = []

    for iteration in np.arange(FLAGS.max_steps):
        x, y = train_data.next_batch(batch_size)
        x = torch.from_numpy(x).to(device)
        y = torch.from_numpy(np.argmax(y, axis=1)).type(torch.LongTensor).to(device)

        train_output = model.forward(x)
        loss = criterion(train_output, y)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if iteration % FLAGS.eval_freq == 0 or iteration == FLAGS.max_steps - 1:
            iterations.append(iteration)

            x_test, y_test = test_data.next_batch(10 * batch_size)
            x_test = torch.from_numpy(x_test).to(device)
            y_test = torch.from_numpy(np.argmax(y_test, axis=1)).type(torch.LongTensor).to(device)

            # Second forward pass for test set
            with torch.no_grad():
                test_output = model.forward(x_test)

            # Calculate losses
            train_loss = criterion.forward(train_output, y)
            losses[0].append(train_loss)

            test_loss = criterion.forward(test_output, y_test)
            losses[1].append(test_loss)

            # Calculate accuracies
            train_acc = accuracy(train_output, y)
            test_acc = accuracy(test_output, y_test)
            accuracies[0].append(train_acc)
            accuracies[1].append(test_acc)

            print("Iteration {}, Train loss: {}, Train accuracy: {}, Test accuracy: {}".format(iteration, train_loss,
                                                                                               train_acc, test_acc))

    fig = plt.figure(figsize=(25, 10), dpi=200)
    fig.suptitle('PyTorch ConvNet: Losses and Accuracies', fontsize=40)
    ax1 = fig.add_subplot(1, 2, 1)
    ax2 = fig.add_subplot(1, 2, 2)

    ax1.plot(iterations, losses[0], linewidth=4, color="g", label="Train loss")
    ax1.plot(iterations, losses[1], linewidth=4, color="c", label="Test loss")
    ax2.plot(iterations, accuracies[0], linewidth=4, color="g", label="Train accuracy")
    ax2.plot(iterations, accuracies[1], linewidth=4, color="c", label="Test accuracy")

    ax1.set_xlabel('$Iteration$', fontsize=28)
    ax1.set_ylabel('$Loss$', fontsize=28)
    ax2.set_xlabel('$Iteration$', fontsize=28)
    ax2.set_ylabel('$Accuracy$', fontsize=28)

    ax1.legend(fontsize=22)
    ax2.legend(fontsize=22)

    plt.savefig("../figures/pytorch_convnet.png")
    plt.show()

    with open('results_convnet.pkl', 'wb') as f:
        pickle.dump([losses, accuracies], f)
コード例 #19
0
def train():
    """
    Performs training and evaluation of ConvNet model.

    TODO:
    Implement training and evaluation of ConvNet model. Evaluate your model on the whole test set each eval_freq iterations.
    """

    ### DO NOT CHANGE SEEDS!
    # Set the random seeds for reproducibility
    np.random.seed(42)

    # ## Prepare all functions
    # # Get number of units in each hidden layer specified in the string such as 100,100
    # if FLAGS.dnn_hidden_units:
    #     dnn_hidden_units = FLAGS.dnn_hidden_units.split(",")
    #     dnn_hidden_units = [int(dnn_hidden_unit_) for dnn_hidden_unit_ in dnn_hidden_units]
    # else:
    #     dnn_hidden_units = []

    # Set path to data
    data_dir = FLAGS.data_dir

    data = cifar10_utils.get_cifar10(data_dir)

    # Prepare the test set
    input_dims_test = data['test'].images.shape
    height = input_dims_test[2]
    width = input_dims_test[3]
    channels = input_dims_test[1]
    # num_images_test = input_dims_test[0]
    # image_dims_ravel = height * width * channels

    X_test = data["test"].images
    Y_test = data["test"].labels

    # Make acceptable input for test
    # X_test = X_test.reshape((num_images_test, image_dims_ravel))

    # make usable by pytorch
    X_test = torch.tensor(X_test, requires_grad=False).type(dtype).to(device)
    Y_test = torch.tensor(Y_test, requires_grad=False).type(dtype).to(device)

    # Determine the channels
    n_channels = channels

    model = ConvNet(n_channels=n_channels, n_classes=10)

    accuracy_train_log = list()
    accuracy_test_log = list()
    loss_train_log = list()
    loss_test_log = list()

    # FLAGS hold command line arguments
    batch_size = FLAGS.batch_size
    numb_iterations = FLAGS.max_steps
    learning_rate = FLAGS.learning_rate
    evaluation_freq = FLAGS.eval_freq
    logging.info(f"learning rate: %2d " % learning_rate)

    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=learning_rate)

    for step in range(numb_iterations):

        X_batch, Y_batch = data['train'].next_batch(batch_size)

        # X_batch = X_batch.reshape((batch_size, image_dims_ravel))

        # Convert to tensors which are handled by the device
        X_batch = torch.from_numpy(X_batch).type(dtype).to(device)
        Y_batch = torch.from_numpy(Y_batch).type(dtype).to(device)

        # why do we need this again?
        optimizer.zero_grad()

        targs = Y_batch.argmax(dim=1)
        outputs = model.forward(X_batch)
        loss_current = criterion(outputs, targs)
        loss_current.backward()
        optimizer.step()

        running_loss = loss_current.item()

        if step % evaluation_freq == 0:
            loss_train_log.append(running_loss)
            accuracy_train_log.append(accuracy(outputs, Y_batch))
            logging.info(f"train performance: loss = %4f, accuracy = %4f ",
                         loss_train_log[-1], accuracy_train_log[-1])

            # Get performance on the test set
            targs_test = Y_test.argmax(dim=1)
            outputs = model(X_test)
            loss_test_log.append(criterion(outputs, targs_test))
            accuracy_test_log.append(accuracy(outputs, Y_test))
            logging.info(f"test performance: loss = %4f , accuracy = %4f\n",
                         loss_test_log[-1], accuracy_test_log[-1])

            # TODO: implement early stopping ?

            list_acc = list()
            list_loss = list()
            for i in range(0, 10):
                selection = random.sample(range(1, 1000), 32)
                targs_test = Y_test[selection].argmax(dim=1)
                outputs_test = model(X_test[selection])
                loss_current_test = criterion(outputs_test,
                                              targs_test).detach().item()
                acc_current_test = accuracy(outputs_test, Y_test[selection])
                list_loss.append(loss_current_test)
                list_acc.append(acc_current_test)

    path = "./mlp_results_pytorch/"
    date_time = datetime.now().replace(
        second=0, microsecond=0).strftime(format="%Y-%m-%d-%H-%M")
    np.save(os.path.join(path, date_time + "accuracy_test"), accuracy_test_log)
    np.save(os.path.join(path, date_time + "loss_test"), loss_test_log)
    np.save(os.path.join(path, date_time + "loss_train"), loss_train_log)
    np.save(os.path.join(path, date_time + "accuracy_train"),
            accuracy_train_log)
コード例 #20
0
def train():
    """
  Performs training and evaluation of ConvNet model. 

  TODO:
  Implement training and evaluation of ConvNet model. Evaluate your model on the whole test set each eval_freq iterations.
  """

    ### DO NOT CHANGE SEEDS!
    # Set the random seeds for reproducibility
    np.random.seed(42)

    ########################
    # PUT YOUR CODE HERE  #
    #######################
    def init_weights(m):
        print(m)
        if type(m) == nn.Linear:
            m.weight.data.uniform_(0.0, 1.0)
            print(m.weight)
            m.bias.data.fill_(0.0)
            print(m.bias)

    lr = FLAGS.learning_rate
    eval_freq = FLAGS.eval_freq
    max_steps = FLAGS.max_steps
    batch_size = FLAGS.batch_size
    input_size = 32 * 32 * 3
    output_size = 10
    # load dataset
    raw_data = cifar10_utils.get_cifar10(DATA_DIR_DEFAULT)
    train_data = raw_data['train']
    validation_data = raw_data["validation"]
    test_data = raw_data['test']
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = ConvNet(n_channels=3, n_classes=10).to(device)
    print(model.layers)

    optimizer = torch.optim.Adam(model.parameters(), lr=lr)
    loss_target = nn.CrossEntropyLoss()
    csv_data = [[
        'step', 'train_loss', 'test_loss', 'train_accuracy', 'test_accuracy'
    ]]
    print("initial weights as normal distribution and bias as zeros")
    # model.layers.apply(init_weights)

    for step in range(max_steps):
        x, y = train_data.next_batch(batch_size)
        # x = x.reshape(batch_size, input_size)
        x = torch.tensor(x, dtype=torch.float32).to(device)
        y = torch.tensor(y, dtype=torch.long).to(device)
        # train
        # x = Variable(torch.from_numpy(x))
        output = model.forward(x)
        loss = loss_target.forward(output, y.argmax(dim=1))
        # somehow we need to divide the loss by the output size to get the same loss
        loss_avg = loss.item()
        # model.zero_grad()
        optimizer.zero_grad()
        loss.backward()

        # only need to update weights for linear module for each step
        optimizer.step()

        # with torch.no_grad():
        #   for param in model.parameters():
        #     param.data -= lr * param.grad

        train_acc = accuracy(output, y)
        # with the \r and end = '' trick, we can print on the same line
        print('\r[{}/{}] train_loss: {}  train_accuracy: {}'.format(
            step + 1, max_steps, round(loss_avg, 3), round(train_acc, 3)),
              end='')
        # evaluate
        if step % eval_freq == 0 or step >= (max_steps - 1):
            test_batch_acc = test_loss_batch = 0
            test_batch_size = 100
            total_test_samples = test_data.num_examples
            batch_num = math.ceil(total_test_samples / test_batch_size)
            for i in range(batch_num):
                x, y = test_data.next_batch(test_batch_size)
                # x = x.reshape(test_data.num_examples, input_size)
                x = torch.tensor(x, dtype=torch.float32).to(device)
                y = torch.tensor(y, dtype=torch.long).to(device)
                output = model.forward(x)
                test_loss_batch += loss_target.forward(output,
                                                       y.argmax(dim=1)).item()

                test_batch_acc += accuracy(output, y)
            test_loss = test_loss_batch / batch_num
            test_acc = test_batch_acc / batch_num
            csv_data.append([step, loss_avg, test_loss, train_acc, test_acc])
            print(' test_loss: {}, test_accuracy: {}'.format(
                round(test_loss, 3), round(test_acc, 3)))
    with open(
            'results/train_summary_torchconvnet_{}.csv'.format(int(
                time.time())), 'w') as csv_file:
        writer = csv.writer(csv_file)
        writer.writerows(csv_data)
コード例 #21
0
def train():
    """
    Performs training and evaluation of ConvNet model.

    TODO:
    Implement training and evaluation of ConvNet model. Evaluate your model on the whole test set each eval_freq iterations.
    """

    ### DO NOT CHANGE SEEDS!
    # Set the random seeds for reproducibility
    np.random.seed(42)

    ########################
    # PUT YOUR CODE HERE  #
    #######################

    # initialize empty dictionaries
    x, y, accu, loss = ({} for _ in range(4))

    # retrieve data
    data = cifar10_utils.get_cifar10(FLAGS.data_dir)

    # determine shapes
    image_shape = data['test'].images[0].shape
    nr_pixels = image_shape[0] * image_shape[1] * image_shape[2]
    nr_labels = data['test'].labels.shape[1]
    nr_test = data['test'].images.shape[0]

    # set standards
    tensor = torch.FloatTensor
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    # save in variables
    for tag in data:
        nr_images = data[tag].images.shape[0]
        x[tag] = torch.tensor(data[tag].images)
        y[tag] = torch.tensor(data[tag].labels)
        accu[tag] = []
        loss[tag] = []

    x['test'] = x['test'].type(tensor).to(device)
    y['test'] = y['test'].type(tensor).to(device)

    # create neural network
    neural_network = ConvNet(nr_pixels, nr_labels).to(device)
    cross_entropy = nn.CrossEntropyLoss().to(device)
    parameter_optimizer = torch.optim.Adam(params=neural_network.parameters(), \
                                 lr=FLAGS.learning_rate)


    dx = 1
    i = 0
    logs = ['\n'.join([key + ' : ' + str(value)
                      for key, value in vars(FLAGS).items()])]
    while i < FLAGS.max_steps and np.linalg.norm(dx) > 1e-5:

        i += 1

        # sample batch from data
        rand_idx = np.random.randint(x['train'].shape[0], size=FLAGS.batch_size)
        x_batch = x['train'][rand_idx].type(tensor).to(device)
        y_batch = y['train'][rand_idx].type(tensor).to(device)

        parameter_optimizer.zero_grad()

        nn_out = neural_network.forward(x_batch)
        ce_out = cross_entropy.forward(nn_out, y_batch.argmax(dim=1))
        ce_out.backward()
        parameter_optimizer.step()

        if i % FLAGS.eval_freq == 0:

            # save train accuracy and loss
            accu['train'].append(accuracy(nn_out, y_batch))
            loss['train'].append(ce_out)

            # calculate and save test accuracy and loss
            nn_out = neural_network.forward(x['test'])
            ce_out = cross_entropy.forward(nn_out, y['test'].argmax(dim=1))
            accu['test'].append(accuracy(nn_out, y['test']))
            loss['test'].append(ce_out.item())

            # show results in command prompt and save log
            s = 'iteration ' + str(i) + ' | train acc/loss ' + \
                str('{:.3f}'.format(accu['train'][-1])) + '/' + \
                str('{:.3f}'.format(loss['train'][-1])) + ' | test acc/loss ' \
                + str('{:.3f}'.format(accu['test'][-1])) + '/' + \
                str('{:.3f}'.format(loss['test'][-1]))

            logs.append(s)
            print(s)
            #sys.stdout.write("\r%s" % s)
            #sys.stdout.flush()


    t = str(time.time())

    # write logs
    with open('results/logs_' + t + '.txt', 'w') as f:
        f.writelines(['%s\n' % item for item in logs])

    # write data to file
    with open('results/data_' + t + '.txt', 'w') as f:
        f.write('train accuracy')
        f.writelines([',%s' % str(item) for item in accu['train']])
        f.write('\ntrain loss')
        f.writelines([',%s' % str(item) for item in loss['train']])
        f.write('\ntest accuracy')
        f.writelines([',%s' % str(item) for item in accu['test']])
        f.write('\ntest loss')
        f.writelines([',%s' % str(item) for item in loss['test']])
コード例 #22
0
def train():
    """
    Performs training and evaluation of ConvNet model.
  
    TODO:
    Implement training and evaluation of ConvNet model. Evaluate your model on the whole test set each eval_freq iterations.
    """

    ### DO NOT CHANGE SEEDS!
    # Set the random seeds for reproducibility
    np.random.seed(42)
    torch.manual_seed(42)

    ########################
    # PUT YOUR CODE HERE  #
    #######################
    cifar10 = cifar10_utils.get_cifar10(FLAGS.data_dir)
    loss_list = []
    batch_list = []
    accuracy_list = []
    batch_list_test = []
    use_cuda = torch.cuda.is_available()
    if use_cuda:
        print('Running in GPU model')

    device = torch.device('cuda' if use_cuda else 'cpu')
    dtype = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor

    for iter in range(313):
        x, y = cifar10['test'].next_batch(FLAGS.batch_size)
        y = np.argmax(y, axis=1)
        batch_list_test.append((x, y))

    for iter in range(FLAGS.max_steps):
        x, y = cifar10['train'].next_batch(FLAGS.batch_size)
        y = np.argmax(y, axis=1)
        batch_list.append((x, y))
    print('Batch list completed')
    in_features = 3
    out_features = 10  #num_classes
    net = ConvNet(in_features, out_features).to(device)
    lossfunc = nn.CrossEntropyLoss()
    optimiser = optim.Adam(net.parameters(), lr=FLAGS.learning_rate)
    net.train()
    for i in range(FLAGS.max_steps):
        inputs, labels = batch_list[i]
        # inputs = torch.from_numpy(inputs)
        inputs = torch.tensor(inputs)
        labels = torch.from_numpy(labels).long()
        inputs, labels = inputs.to(device), labels.to(device)

        optimiser.zero_grad()
        outputs = net.forward(inputs.float())

        loss = lossfunc(outputs, labels)

        loss_list.append(loss)

        loss.backward()
        optimiser.step()
        if (i + 1) % FLAGS.eval_freq == 0:
            net.eval()
            total = 0
            for data in batch_list_test:
                x_test, y_test = data
                x_test = torch.from_numpy(x_test).type(dtype).to(device)
                y_test = torch.from_numpy(y_test).long().to(device)
                predicted = net.forward(x_test)
                acc = accuracy(predicted, y_test)
                total += acc

            accuracy_list.append(total / len(batch_list_test))
            print('Accuracy on test set at step {} is {}'.format(
                i, total / len(batch_list_test)))
            print('Loss of training is {}'.format(loss.item()))

    plt.subplot(2, 1, 1)
    plt.plot(
        np.arange(len(accuracy_list) * FLAGS.eval_freq, step=FLAGS.eval_freq),
        accuracy_list, 'o-')
    plt.xlabel('Step')
    plt.ylabel('Accuracy')
    #
    plt.subplot(2, 1, 2)
    plt.plot(np.arange(len(loss_list)), loss_list)
    plt.xlabel('Step')
    plt.ylabel('Loss')
コード例 #23
0
def train():
    """
  Performs training and evaluation of ConvNet model. 

  TODO:
  Implement training and evaluation of ConvNet model. Evaluate your model on the whole test set each eval_freq iterations.
  """

    ### DO NOT CHANGE SEEDS!
    # Set the random seeds for reproducibility
    np.random.seed(42)

    ########################
    # PUT YOUR CODE HERE  #
    #######################
    if torch.cuda.is_available():
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")

    dataset_dict = cifar10_utils.get_cifar10(DATA_DIR_DEFAULT)
    train_loader = dataset_dict['train']
    test_loader = dataset_dict['test']
    test_images = Variable(torch.tensor(test_loader.images))
    test_labels = torch.tensor(test_loader.labels)
    model = ConvNet(n_channels=3, n_classes=10).to(device)
    optimizer = torch.optim.Adam(model.parameters(), lr=FLAGS.learning_rate)
    criterion = torch.nn.CrossEntropyLoss()

    test_accs = []
    train_accs = []
    losses = []
    for epoch in range(FLAGS.max_steps):
        model.train()
        batch_x, batch_y = train_loader.next_batch(FLAGS.batch_size)
        batch_x, batch_y = Variable(
            torch.tensor(batch_x).to(device)), Variable(
                torch.tensor(batch_y).to(device))
        optimizer.zero_grad()
        out = model.forward(batch_x)
        loss = criterion(out, batch_y.max(1)[1])

        # l2_reg = torch.tensor(0).float().to(device)
        # for param in model.parameters():
        #   l2_reg += torch.norm(param, 2)
        # loss = torch.add(loss, l2_reg/100)

        # l1_reg = torch.tensor(0).float().to(device)
        # for param in model.parameters():
        #   l1_reg += torch.norm(param, 1)
        # loss = torch.add(loss, l1_reg / 100000)

        losses.append(round(float(loss), 3))
        loss.backward()
        optimizer.step()

        if epoch % FLAGS.eval_freq == 0:
            with torch.no_grad():
                model.eval()
                # print accuracy on test and train set
                train_acc = accuracy(out, batch_y)

                #COMPUTE TEST ACCURACY
                all_predictions = torch.tensor([]).float().to(device)
                for i in range(FLAGS.batch_size, test_images.shape[0],
                               FLAGS.batch_size):
                    out = model.forward(
                        test_images[i - FLAGS.batch_size:i].to(device))
                    all_predictions = torch.cat((all_predictions, out))
                if i < test_images.shape[0]:
                    out = model.forward(test_images[i:].to(device))
                    all_predictions = torch.cat((all_predictions, out))
                test_acc = accuracy(all_predictions, test_labels.to(device))

                print(
                    'Train Epoch: {}/{}\tLoss: {:.6f}\tTrain accuracy: {:.6f}\tTest accuracy: {:.6f}'
                    .format(epoch, FLAGS.max_steps, loss, train_acc, test_acc))
                test_accs.append(float(test_acc))
                train_accs.append(float(train_acc))

    with torch.no_grad():
        # COMPUTE TEST ACCURACY
        all_predictions = torch.tensor([]).float().to(device)
        for i in range(FLAGS.batch_size, test_images.shape[0],
                       FLAGS.batch_size):
            out = model.forward(test_images[i - FLAGS.batch_size:i].to(device))
            all_predictions = torch.cat((all_predictions, out))
        if i < test_images.shape[0]:
            out = model.forward(test_images[i:].to(device))
            all_predictions = torch.cat((all_predictions, out))
        test_acc = accuracy(all_predictions, test_labels.to(device))
    print('FINAL Test accuracy: {:.6f}'.format(test_acc))

    import matplotlib.pyplot as plt
    plt.figure()
    plt.plot([i for i in range(0, epoch + 1, EVAL_FREQ_DEFAULT)], train_accs)
    plt.plot([i for i in range(0, epoch + 1, EVAL_FREQ_DEFAULT)], test_accs)
    plt.legend(["train", "test"])
    plt.ylabel("accuracy")
    plt.xlabel("epoch")
    plt.savefig("cnn_accuracy")
    plt.figure()
    plt.plot([i for i in range(0, epoch + 1)], losses)
    plt.legend(["loss"])
    plt.ylabel("loss")
    plt.xlabel("epoch")
    plt.savefig("cnn_loss")
コード例 #24
0
def train(_run):
    """
  Performs training and evaluation of ConvNet model. 

  Implement training and evaluation of ConvNet model. Evaluate your model on the whole test set each eval_freq iterations.
  """

    ### DO NOT CHANGE SEEDS!
    # Set the random seeds for reproducibility
    np.random.seed(42)

    ########################
    # PUT YOUR CODE HERE  #
    #######################
    def get_xy_tensors(batch):
        x, y = batch
        x = torch.tensor(x, dtype=torch.float32).to(device)
        y = torch.tensor(y, dtype=torch.long).to(device)
        return x, y

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    datasets = cifar10_utils.read_data_sets(DATA_DIR_DEFAULT, one_hot=False)
    train_data = datasets['train']
    test_data = datasets['test']
    model = ConvNet(n_channels=3, n_classes=10).to(device)
    loss_fn = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=FLAGS.learning_rate)

    log_every = 100
    avg_loss = 0
    avg_acc = 0
    for step in range(FLAGS.max_steps):
        x, y = get_xy_tensors(train_data.next_batch(FLAGS.batch_size))

        # Forward and backward passes
        optimizer.zero_grad()
        out = model.forward(x)
        loss = loss_fn(out, y)
        loss.backward()

        # Parameter updates
        optimizer.step()

        avg_loss += loss.item() / log_every
        avg_acc += accuracy(out, y) / log_every
        if step % log_every == 0:
            print('[{}/{}] train loss: {:.6f}  train acc: {:.6f}'.format(
                step, FLAGS.max_steps, avg_loss, avg_acc))
            _run.log_scalar('train-loss', avg_loss, step)
            _run.log_scalar('train-acc', avg_acc, step)
            avg_loss = 0
            avg_acc = 0

        # Evaluate
        if step % FLAGS.eval_freq == 0 or step == (FLAGS.max_steps - 1):
            n_test_iters = int(
                np.ceil(test_data.num_examples / TEST_BATCH_SIZE))
            test_loss = 0
            test_acc = 0
            for i in range(n_test_iters):
                x, y = get_xy_tensors(test_data.next_batch(TEST_BATCH_SIZE))
                model.eval()
                out = model.forward(x)
                model.train()
                test_loss += loss_fn(out, y).item() / n_test_iters
                test_acc += accuracy(out, y) / n_test_iters

            print('[{}/{}]  test accuracy: {:6f}'.format(
                step, FLAGS.max_steps, test_acc))

            _run.log_scalar('test-loss', test_loss, step)
            _run.log_scalar('test-acc', test_acc, step)
コード例 #25
0
def train():
    """
  Performs training and evaluation of ConvNet model. 

  TODO:
  Implement training and evaluation of ConvNet model. Evaluate your model on the whole test set each eval_freq iterations.
  """

    ### DO NOT CHANGE SEEDS!
    # Set the random seeds for reproducibility
    np.random.seed(42)

    ########################
    # PUT YOUR CODE HERE  #
    #######################

    #load data
    cifar10 = cifar10_utils.get_cifar10(FLAGS.data_dir)

    #hyperparameters
    eta = FLAGS.learning_rate
    eps = 1e-6  # convergence criterion
    max_steps = FLAGS.max_steps
    b_size = FLAGS.batch_size

    #test_data
    x_test = cifar10["test"].images
    y_test = cifar10["test"].labels

    #get usefull dimensions
    n_channels = np.size(x_test, 1)
    n_classes = np.size(y_test, 1)
    n_batches = np.size(x_test, 0) // b_size

    #load whole train data ############################################################
    x_train = cifar10["train"].images
    x_train = torch.tensor(x_train, requires_grad=False).type(dtype).to(device)
    n_train_batches = np.size(x_train, 0) // b_size

    #initialize the ConvNet model
    model = ConvNet(n_channels, n_classes)
    get_loss = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=eta)

    model.to(device)

    train_loss = []
    test_loss = []
    train_acc = []
    test_acc = []

    for step in range(max_steps):
        #get batch
        x, y = cifar10['train'].next_batch(b_size)
        x = torch.tensor(x).type(dtype).to(device)
        y = torch.tensor(y).type(dtype).to(device)

        #forward pass
        pred = model.forward(x)

        #get training loss
        current_loss = get_loss(pred, y.argmax(dim=1))
        optimizer.zero_grad()

        #get training loss gradient
        current_loss.backward()

        #get training accuracy
        current_train_acc = accuracy(pred, y)

        optimizer.step()

        #free memory up
        pred.detach()
        x.detach()
        y.detach()

        #select evaluation step
        if (step % FLAGS.eval_freq) == 0:

            # c_train_loss = current_loss.data.item()
            # train_loss.append(c_train_loss)
            # train_acc.append(current_train_acc)

            c_train_loss = 0
            current_train_acc = 0

            c_test_loss = 0
            current_test_acc = 0

            #loop through train set in batches ######################################################
            for test_batch in range(n_train_batches):
                #load test data
                x_train, y_train = cifar10['train'].next_batch(b_size)
                x_train = torch.tensor(
                    x_train, requires_grad=False).type(dtype).to(device)
                y_train = torch.tensor(
                    y_train, requires_grad=False).type(dtype).to(device)

                #get test batch results
                train_pred = model.forward(x_train)
                current_train_loss = get_loss(train_pred,
                                              y_train.argmax(dim=1))

                c_train_loss += current_train_loss.data.item()
                current_train_acc += accuracy(train_pred, y_train)

                #free memory up
                train_pred.detach()
                x_train.detach()
                y_train.detach()

            #loop through test set in batches
            for test_batch in range(n_batches):
                #load test data
                x_test, y_test = cifar10['test'].next_batch(b_size)
                x_test = torch.tensor(
                    x_test, requires_grad=False).type(dtype).to(device)
                y_test = torch.tensor(
                    y_test, requires_grad=False).type(dtype).to(device)

                #get test batch results
                test_pred = model.forward(x_test)
                current_test_loss = get_loss(test_pred, y_test.argmax(dim=1))

                c_test_loss += current_test_loss.data.item()
                current_test_acc += accuracy(test_pred, y_test)

                #free memory up
                test_pred.detach()
                x_test.detach()
                y_test.detach()

            #get full training set results #########################################################
            c_train_loss = c_train_loss / n_train_batches
            current_train_acc = current_train_acc / n_train_batches
            train_loss.append(c_train_loss)
            train_acc.append(current_train_acc)

            #get full test set results
            c_test_loss = c_test_loss / n_batches
            current_test_acc = current_test_acc / n_batches
            test_loss.append(c_test_loss)
            test_acc.append(current_test_acc)

            print('\nStep ', step, '\n------------\nTraining Loss = ',
                  round(c_train_loss, 4),
                  ', Train Accuracy = ', current_train_acc, '\nTest Loss = ',
                  round(c_test_loss, 4), ', Test Accuracy = ',
                  round(current_test_acc, 4))

            if step > 0 and abs(test_loss[(int(step / FLAGS.eval_freq))] -
                                test_loss[int(step / FLAGS.eval_freq) -
                                          1]) < eps:
                break

    plot_graphs(train_loss,
                'Training Loss',
                'orange',
                test_loss,
                'Test Loss',
                'blue',
                title='Adams optimization',
                ylabel='Loss',
                xlabel='Steps')

    plot_graphs(train_acc,
                'Training Accuracy',
                'darkorange',
                test_acc,
                'Test Accuracy',
                'darkred',
                title='Adams optimization',
                ylabel='Accuracy',
                xlabel='Steps')

    #save results:
    np.save('train_loss', train_loss)
    np.save('train_acc', train_acc)
    np.save('test_loss', test_loss)
    np.save('test_acc', test_acc)
コード例 #26
0
def train():
    """
  Performs training and evaluation of ConvNet model.

  TODO:
  Implement training and evaluation of ConvNet model. Evaluate your model on the whole test set each eval_freq iterations.
  """

    ### DO NOT CHANGE SEEDS!
    # Set the random seeds for reproducibility
    np.random.seed(42)

    ########################
    # PUT YOUR CODE HERE  #
    #######################
    learning_rate = FLAGS.learning_rate
    max_steps = FLAGS.max_steps
    batch_size = FLAGS.batch_size
    eval_freq = FLAGS.eval_freq

    cifar10 = cifar10_utils.get_cifar10('cifar10/cifar-10-batches-py')

    convnet = ConvNet(3, 10).cuda()

    opt = optim.Adam(convnet.parameters(), lr=learning_rate)
    loss_function = nn.CrossEntropyLoss()

    train_losses = []
    accuracies = []
    steps = []

    for step in range(max_steps):
        total_loss = 0

        x, y = cifar10['train'].next_batch(batch_size)
        x_tensor = torch.from_numpy(x).cuda()
        y_tensor = torch.from_numpy(y).cuda()

        out = convnet(x_tensor)
        loss = loss_function(out, torch.max(y_tensor, 1)[1])
        total_loss += loss

        opt.zero_grad()

        loss.backward()
        opt.step()

        train_losses.append(total_loss)
        print('Step: {} Loss: {:.4f}'.format(step + 1, total_loss))
        if (step + 1) % eval_freq == 0:
            test_pred_seq = []
            test_labels_seq = []
            while (cifar10['test']._epochs_completed == 0):
                test_x, test_y = cifar10['test'].next_batch(batch_size)
                test_x_tensor = torch.from_numpy(test_x).cuda()
                test_y_tensor = torch.from_numpy(test_y).cuda()
                test_out = convnet(test_x_tensor)
                test_out_cpu = test_out.cpu().detach().numpy()
                test_y_tensor_cpu = test_y_tensor.cpu().detach().numpy()
                test_pred_seq.append(test_out_cpu)
                test_labels_seq.append(test_y_tensor_cpu)
            test_pred = np.vstack(test_pred_seq)
            test_labels = np.vstack(test_labels_seq)
            test_accuracy = accuracy(test_pred, test_labels)
            accuracies.append(test_accuracy)
            steps.append(step + 1)

            cifar10['test']._epochs_completed = 0
            print('Step: {} Accuracy {:.2f}'.format(step + 1, test_accuracy))

    plt.plot(range(max_steps), train_losses)
    plt.xlabel("Step")
    plt.ylabel("Training loss")
    plt.show()

    plt.plot(steps, accuracies)
    plt.xlabel("Step")
    plt.ylabel("Test Accuracy")
    plt.show()
コード例 #27
0
def train():
    """
  Performs training and evaluation of ConvNet model. 

  TODO:
  Implement training and evaluation of ConvNet model. Evaluate your model on the whole test set each eval_freq iterations.
  """

    ### DO NOT CHANGE SEEDS!
    # Set the random seeds for reproducibility
    np.random.seed(42)

    ########################
    # PUT YOUR CODE HERE  #
    #######################
    import matplotlib.pyplot as plt

    if not torch.cuda.is_available():
        print("WARNING: CUDA DEVICE IS NOT AVAILABLE, WILL TRAIN ON CPU")
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    data = cifar10_utils.get_cifar10(FLAGS.data_dir)

    train = data['train']
    test = data['test']

    images_test_np = test.images
    labels_test_np = test.labels

    vgg = ConvNet(3, 10)
    vgg.to(device)

    if MEM_DEBUG:
        print("Memory after VGG loaded: Alloc: {} MB, Cached: {} MB".format(
            torch.cuda.memory_allocated(device) / 1e6,
            torch.cuda.memory_cached(device) / 1e6))

    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(vgg.parameters())

    loss_train = np.zeros((int(np.floor(FLAGS.max_steps / FLAGS.eval_freq), )))
    loss_test = np.zeros((int(np.floor(FLAGS.max_steps / FLAGS.eval_freq), )))
    accuracy_test = np.zeros(
        (int(np.floor(FLAGS.max_steps / FLAGS.eval_freq), )))

    for i in range(0, FLAGS.max_steps):
        print('iter', i + 1, end='\r')
        images_np, labels_np = train.next_batch(FLAGS.batch_size)

        images = torch.from_numpy(images_np).to(device)
        labels = torch.from_numpy(np.argmax(labels_np, axis=1)).to(device)

        if MEM_DEBUG:
            print("\nMemory after train loaded: Alloc: {} MB, Cached: {} MB".
                  format(
                      torch.cuda.memory_allocated(device) / 1e6,
                      torch.cuda.memory_cached(device) / 1e6))

        optimizer.zero_grad()

        pred = vgg(images)
        loss = criterion(pred, labels.long())
        loss.backward()
        optimizer.step()

        del images
        del labels

        if (i + 1) % FLAGS.eval_freq == 0:
            if MEM_DEBUG:
                print("Memory entering the eval: Alloc: {} MB, Cached: {} MB".
                      format(
                          torch.cuda.memory_allocated(device) / 1e6,
                          torch.cuda.memory_cached(device) / 1e6))
            loss_train[i // FLAGS.eval_freq] = loss.item()

            images_test = torch.from_numpy(images_test_np).to(device)
            labels_test = torch.from_numpy(np.argmax(labels_test_np,
                                                     axis=1)).to(device)

            if MEM_DEBUG:
                print("Memory after test loaded: Alloc: {} MB Cached: {} MB".
                      format(
                          torch.cuda.memory_allocated(device) / 1e6,
                          torch.cuda.memory_cached(device) / 1e6))

            vgg.eval()
            with torch.no_grad():
                pred_test = vgg(images_test)
            vgg.train()

            accuracy_test[i // FLAGS.eval_freq] = accuracy(
                pred_test, F.one_hot(labels_test)).item()
            loss_test[i // FLAGS.eval_freq] = criterion(
                pred_test, labels_test.long()).item()

            if PRINTS:
                print()
                print('test_loss:', loss_test[i // FLAGS.eval_freq])
                print('test_accuracy:', accuracy_test[i // FLAGS.eval_freq])
                print('train_loss:', loss_train[i // FLAGS.eval_freq])
    if PLOTS:
        fig, ax = plt.subplots(1, 2, figsize=(10, 5))
        fig.suptitle('Training curves for Pytorch Convnet')

        ax[0].set_title('Loss')
        ax[0].set_ylabel('Loss value')
        ax[0].set_xlabel('No of batches seen x{}'.format(FLAGS.eval_freq))
        ax[0].plot(loss_train, label='Train')
        ax[0].plot(loss_test, label='Test')
        ax[0].legend()

        ax[1].set_title('Accuracy')
        ax[1].set_ylabel('Accuracy value')
        ax[1].set_xlabel('No of batches seen x{}'.format(FLAGS.eval_freq))
        ax[1].plot(accuracy_test, label='Test')
        ax[1].legend()

        import time

        fig_name = 'pt_conv_training_{}_{}_{}_{}.jpg'.format(
            FLAGS.max_steps, FLAGS.batch_size, FLAGS.eval_freq, time.time())
        plt.savefig(fig_name)
コード例 #28
0
def train():
    """
  Performs training and evaluation of ConvNet model.

  TODO:
  Implement training and evaluation of ConvNet model. Evaluate your model on the whole test set each eval_freq iterations.
  """

    ### DO NOT CHANGE SEEDS!
    # Set the random seeds for reproducibility
    np.random.seed(42)
    torch.manual_seed(42)
    ########################
    # PUT YOUR CODE HERE  #
    #######################
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    cifar10 = cifar10_utils.get_cifar10(data_dir=FLAGS.data_dir)
    train_data = cifar10['train']

    n_channels = train_data.images.shape[0]
    n_classes = train_data.labels.shape[1]

    net = ConvNet(n_channels, n_classes)
    net.to(device)

    params = net.parameters()
    optimizer = torch.optim.Adam(params, lr=FLAGS.learning_rate)
    criterion = torch.nn.CrossEntropyLoss()
    rloss = 0
    train_acc_plot = []
    test_acc_plot = []
    loss_train = []
    loss_test = []

    print(f'[DEBUG] start training.... Max steps {FLAGS.max_steps}')

    for i in range(0, FLAGS.max_steps):
        x, y = cifar10['train'].next_batch(FLAGS.batch_size)
        x, y = torch.from_numpy(x).float().to(device), torch.from_numpy(
            y).float().to(device)
        out = net.forward(x)
        loss = criterion(out, y.argmax(1))
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        rloss += loss.item()

        if i % FLAGS.eval_freq == 0:
            train_accuracy = accuracy(out, y)
            with torch.no_grad():
                test_accuracys, test_losses = [], []
                for j in range(0, FLAGS.max_steps):
                    test_x, test_y = cifar10['test'].next_batch(
                        FLAGS.batch_size)
                    test_x, test_y = torch.from_numpy(test_x).float().to(
                        device), torch.from_numpy(test_y).float().to(device)

                    test_out = net.forward(test_x)
                    test_loss = criterion(test_out, test_y.argmax(1))
                    test_accuracy = accuracy(test_out, test_y)
                    if device == 'cpu':
                        test_losses.append(test_loss)
                    else:
                        test_losses.append(test_loss.cpu().data.numpy())

                    test_accuracys.append(test_accuracy)
                t_acc = np.array(test_accuracys).mean()
                t_loss = np.array(test_losses).mean()
                train_acc_plot.append(train_accuracy)
                test_acc_plot.append(t_acc)
                loss_train.append(rloss / (i + 1))
                loss_test.append(t_loss)
                print(
                    f"iter {i}, train_loss_avg {rloss/(i + 1)}, test_loss_avg {t_loss}, train_acc {train_accuracy}, test_acc_avg {t_acc}"
                )
    print('[DEBUG] Done training')
    if FLAGS.plot:
        print('[DEBUG] Start plotting...')
        fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
        ax1.plot(np.arange(len(train_acc_plot)),
                 train_acc_plot,
                 label='training')
        ax1.plot(np.arange(len(test_acc_plot)), test_acc_plot, label='testing')
        ax1.set_title('Training evaluation with batch size ' +
                      str(FLAGS.batch_size) + '\n learning rate ' +
                      str(FLAGS.learning_rate) + '\n best accuracy ' +
                      str(max(test_acc_plot)))
        ax1.set_ylabel('Accuracy')
        ax1.legend()
        ax2.plot(np.arange(len(loss_train)), loss_train, label='Train Loss')
        ax2.plot(np.arange(len(loss_test)), loss_test, label='Test Loss')
        ax2.set_title('Loss evaluation')
        ax2.set_ylabel('Loss')
        ax2.legend()
        plt.xlabel('Iteration')
        plt.savefig('convnet.png')
コード例 #29
0
def train():
    """
  Performs training and evaluation of ConvNet model. 

  Implement training and evaluation of ConvNet model. Evaluate your model on the whole test set each eval_freq iterations.
  """

    ### DO NOT CHANGE SEEDS!
    # Set the random seeds for reproducibility
    np.random.seed(42)

    ########################
    # PUT YOUR CODE HERE  #
    #######################

    device = torch.device("cuda")

    cifar10 = cifar10_utils.get_cifar10(DATA_DIR_DEFAULT)

    dataset = cifar10_utils.get_cifar10()
    training = dataset['train']
    test = dataset['test']

    model = ConvNet(3, 10)
    model.to(device)

    optimizer = torch.optim.Adam(model.parameters(), lr=FLAGS.learning_rate)

    ce = torch.nn.CrossEntropyLoss()

    test_accuracy = []
    loss_list = []

    for epoch in np.arange(0, FLAGS.max_steps):
        x, y = training.next_batch(FLAGS.batch_size)
        x = Variable(torch.tensor(x).to(device))
        y = Variable(torch.tensor(y).to(device))

        optimizer.zero_grad()
        model.train()
        yh = model.forward(x)
        loss = ce(yh, torch.max(y, 1)[1])
        loss_list.append(loss.item())
        loss.backward()
        optimizer.step()

        if (epoch + 1) % int(FLAGS.eval_freq) == 0:

            acc = []
            with torch.no_grad():
                for _ in np.arange(0, (test.num_examples // FLAGS.batch_size)):
                    x, y = test.next_batch(FLAGS.batch_size)
                    x = torch.tensor(x).to(device)
                    y = torch.tensor(y).to(device)

                    model.eval()
                    yh = model.forward(x)
                    acc.append(accuracy(yh, y))
                test_accuracy.append(np.mean(acc))
                print(np.mean(acc))

    import seaborn as sns
    import matplotlib.pyplot as plt
    f, axes = plt.subplots(1, 2)
    ax = sns.lineplot(np.arange(0, MAX_STEPS_DEFAULT, EVAL_FREQ_DEFAULT),
                      test_accuracy,
                      ax=axes[0])
    ax.set_title('Test accuracy')
    ax = sns.lineplot(np.arange(0, MAX_STEPS_DEFAULT, 1),
                      loss_list,
                      ax=axes[1])
    ax.set_title('Loss')
    figure = ax.get_figure()
    figure.savefig("cnn-pytorch-results")
コード例 #30
0
def train():
    """
    Performs training and evaluation of ConvNet model.
  
    """

    ### DO NOT CHANGE SEEDS!
    # Set the random seeds for reproducibility
    np.random.seed(42)
    torch.manual_seed(42)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(42)
        torch.cuda.manual_seed_all(42)

    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

    device = torch.device(
        "cuda") if torch.cuda.is_available() else torch.device("cpu")
    # print("Device", device)

    data = cifar10_utils.get_cifar10(data_dir=FLAGS.data_dir)
    train = data['train']
    test = data['test']
    # print(train.images[0].shape)
    # n_inputs = train.images[0].flatten().shape[0]
    n_channels = train.images[0].shape[0]
    n_classes = train.labels[0].shape[0]

    print(train.images.shape)

    # transform = transforms.Compose(
    #     [transforms.Resize((224, 224)),
    #      transforms.ToTensor(),
    #      transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])

    if FLAGS.model == 'ALEX':
        train.images = torch.Tensor([resize(img) for img in train.images])
        test.images = torch.Tensor([resize(img) for img in test.images])
        print('doneee')
        model = models.alexnet(pretrained=True)
        torch.save(model.state_dict(), 'alexnet.txt')

        # model = torch.load('alexnet.txt')

        for param in model.features.parameters():
            param.requires_grad = False

        loss_mod = nn.CrossEntropyLoss()
        optimizer = torch.optim.AdamW(model.classifier.parameters(),
                                      lr=FLAGS.learning_rate)
    else:
        model = ConvNet(n_channels, n_classes)
        loss_mod = nn.CrossEntropyLoss()
        optimizer = torch.optim.AdamW(model.parameters(),
                                      lr=FLAGS.learning_rate)

    model.to(device)

    loss_history = []
    acc_history = []
    for step in range(2):  #FLAGS.max_steps
        model.train()
        x, y = train.next_batch(FLAGS.batch_size)
        x = torch.from_numpy(x).to(device)
        y = torch.from_numpy(np.argmax(y, axis=1)).to(
            device)  # converts onehot to dense

        if FLAGS.model == 'ADAM': x = resizer(x)

        out = model(x)
        loss = loss_mod(out, y)
        loss_history.append(loss)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if step == 0 or (step + 1) % FLAGS.eval_freq == 0:
            model.eval()
            with torch.no_grad():
                x, y = torch.from_numpy(test.images), torch.from_numpy(
                    test.labels)
                acc = 0
                test_step = int(x.shape[0] / 20)
                for i in range(0, x.shape[0], test_step):
                    batch_x = x[i:i + test_step].to(device)
                    batch_y = y[i:i + test_step].to(device)
                    if FLAGS.model == 'ADAM': batch_x = resizer(batch_x)
                    test_out = model.forward(batch_x)
                    acc += accuracy(test_out, batch_y) / 20
                print('Accuracy:', acc)
                acc_history.append(acc)
    print('Final loss:', loss_history[-1])
    print('Final acc:', acc_history[-1])

    plt.plot(loss_history)
    plt.step(range(0, FLAGS.max_steps + 1, FLAGS.eval_freq),
             acc_history)  # range(0, FLAGS.max_steps, FLAGS.eval_freq)
    plt.legend(['loss', 'accuracy'])