コード例 #1
0
def evalErrorGroundTruth(w, Rs, Ts, s0, gt):
    """ w: 1 x nGuide, R/Ts: nGuide * R/t """
    n = len(w)
    Rs = np.matrix(Rs.reshape(n, -1))
    Ts = np.matrix(Ts.reshape(n, -1))

    R = (w*Rs).reshape((3,3))
    T = (w*Ts).A1

    s1 = cd.point_trans(s0, R, T)
    diff = np.array(s1 - gt).flatten()
    return diff.dot(diff)
コード例 #2
0
def estimateWeight(sf, BgsfR, Bgsft, constrain):
    """sf: ndarray, nframe * ({pi}, {ti}), exclude 0, so n=factor-1
    BgsfR/t: tuple, n * nFrame * {R/t}"""
    lambda1 = 1.0

    nFrame = sf.shape[0]
    nGuide = BgsfR.shape[0]

    #print nFrame, nGuide

    pmat_square = np.matrix(np.zeros((nGuide, nGuide)))
    tmat_square = np.matrix(np.zeros((nGuide, nGuide)))
    plinearmat = np.matrix(np.zeros(nGuide))
    tlinearmat = np.matrix(np.zeros(nGuide))
    pcmat_square = 0.0
    tcmat_square = 0.0


    for i in range(1, nFrame):
        pc, tc = sf[i]
        Rs = BgsfR[:, i, ...]
        Ts = Bgsft[:, i, ...]
        pos_, dir_ = cd.point_trans(sf[0], Rs, Ts, batch=True) # pos_, dir_ are flattened 1 x 3nGuide

        posMat = np.matrix(pos_.reshape(nGuide, 3))
        dirMat = np.matrix(dir_.reshape(nGuide, 3))
        pmat_square += posMat * posMat.T
        tmat_square += dirMat * dirMat.T
        plinearmat += pc * posMat.T
        tlinearmat += tc * dirMat.T
        pcmat_square += pc.dot(pc)
        tcmat_square += tc.dot(tc)

    mats = (pmat_square, plinearmat.A1, pcmat_square, tmat_square, tlinearmat.A1, tcmat_square)

    initx = np.array([1.0 / nGuide] * nGuide)
    res = minimize(evalError, initx, args=(mats, lambda1), jac=evalDerive,
                   options={'disp': False, 'ftol':1e-12, 'maxiter':100}, method='SLSQP', constraints=constrain, )

    error = evalError(res.x,mats, lambda1)

    # error = 0.0

    # for i in range(1, nFrame):
    #     Rs = BgsfR[:, i, ...]
    #     Ts = Bgsft[:, i, ...]
    #     error += evalErrorGroundTruth(res.x, Rs, Ts, sf[0], sf[i])

    return res, error