コード例 #1
0
def f_left(f, t, q1, q2, p1, p2, p3, params):

    k = params.boltzmann_constant
    E_upper = params.E_band
    T = params.initial_temperature
    mu = params.initial_mu

    t = params.current_time
    omega = 2. * np.pi * params.AC_freq

    if (params.source_type == 'AC'):
        vel_drift_x_in = params.vel_drift_x_in * np.sin(omega * t)
    elif (params.source_type == 'DC'):
        vel_drift_x_in = params.vel_drift_x_in
    else:
        raise NotImplementedError('Unsupported source_type')

    if (params.p_space_grid == 'cartesian'):
        p_x = p1
        p_y = p2
    elif (params.p_space_grid == 'polar2D'):
        p_x = p1 * af.cos(p2)
        p_y = p1 * af.sin(p2)
    else:
        raise NotImplementedError('Unsupported coordinate system in p_space')

    fermi_dirac_in = (1. / (af.exp(
        (E_upper - vel_drift_x_in * p_x - mu) / (k * T)) + 1.))

    x, y = coords.get_cartesian_coords(q1, q2)

    y_contact_start = params.contact_start
    y_contact_end = params.contact_end

    cond = ((y >= y_contact_start) & \
            (y <= y_contact_end) \
           )

    f_left = cond * fermi_dirac_in + (1 - cond) * f

    af.eval(f_left)
    return (f_left)
コード例 #2
0
ファイル: movie.py プロジェクト: mchandra/Bolt
N_q2_2 = domain_2.N_q2

q1_2 = domain_2.q1_start + (0.5 + np.arange(N_q1_2)) * (domain_2.q1_end - \
        domain_2.q1_start)/N_q1_2
q2_2 = domain_2.q2_start + (0.5 + np.arange(N_q2_2)) * (domain_2.q2_end - \
        domain_2.q2_start)/N_q2_2

dq1_2 = (domain_2.q1_end - domain_1.q1_start) / N_q1_1
dq2_2 = (domain_2.q2_end - domain_1.q2_start) / N_q2_1

q2_meshgrid_2, q1_meshgrid_2 = np.meshgrid(q2_2, q1_2)

q1_meshgrid_2 = af.from_ndarray(q1_meshgrid_2)
q2_meshgrid_2 = af.from_ndarray(q2_meshgrid_2)

x, y = coords_2.get_cartesian_coords(q1_meshgrid_2, q2_meshgrid_2)

x_2 = x.to_ndarray()
y_2 = y.to_ndarray()

# Stich domains
#N_q1 = N_q1_1
#N_q2 = N_q2_1 + N_q2_2

#q1_start = 0.
#q1_end   = domain_1.q1_end
#q2_start = 0.
#q2_end   = domain_1.q2_end + domain_2.q2_end

#dq1 = (q1_end - q1_start)/N_q1
#dq2 = (q2_end - q2_start)/N_q2
コード例 #3
0
def initialize_f(q1, q2, p1, p2, p3, params):

    PETSc.Sys.Print("Initializing f")
    k = params.boltzmann_constant

    params.mu = 0. * q1 + params.initial_mu
    params.T = 0. * q1 + params.initial_temperature
    params.vel_drift_x = 0. * q1
    params.vel_drift_y = 0. * q1
    params.phi = 0. * q1

    params.mu_ee = params.mu.copy()
    params.T_ee = params.T.copy()
    params.vel_drift_x = 0. * q1 + 0e-3
    params.vel_drift_y = 0. * q1 + 0e-3
    params.j_x = 0. * q1
    params.j_y = 0. * q1

    params.E_band = params.band_energy(p1, p2)
    params.vel_band = params.band_velocity(p1, p2)

    E_upper = params.E_band + params.charge[0] * params.phi

    if (params.p_space_grid == 'cartesian'):
        p_x = p1
        p_y = p2
    elif (params.p_space_grid == 'polar2D'):
        p_x = p1 * af.cos(p2)
        p_y = p1 * af.sin(p2)
    else:
        raise NotImplementedError('Unsupported coordinate system in p_space')

    # Initialize to zero
    f = 0 * q1 * p1

    # Parameters to define a gaussian in space (representing a 2D ball)
    A = domain.N_p2  # Amplitude (required for normalization)
    sigma_x = 0.05  # Standard deviation in x
    sigma_y = 0.05  # Standard deviation in y
    x_0 = 0.  # Center in x
    y_0 = 0.  # Center in y

    # TODO: This will work with polar2D p-space only for the moment
    # Particles lying on the ball need to have the same velocity (direction)
    #theta_0_index = (5*N_p2/8) - 1 # Direction of initial velocity
    theta_0_index = int(5 * domain.N_p2 / 8)  # Direction of initial velocity

    print("Initial angle : ")
    af.display(p2[theta_0_index])

    # Load shift indices for all 4 boundaries into params. Required to perform
    # mirroring operations along boundaries at arbitrary angles.
    params.shift_indices_left, params.shift_indices_right, \
    params.shift_indices_bottom, params.shift_indices_top = \
            compute_shift_indices(q1, q2, p1, p2, p3, params)

    x, y = coords.get_cartesian_coords(q1, q2)

    #    f[theta_0_index, :, :]  = A + A*af.exp(-( (x-x_0)**2/(2*sigma_x**2) + \
    #                                          (y-y_0)**2/(2*sigma_y**2)
    #                                        )
    #                                      )
    f = (1. / (af.exp(
        (E_upper - params.vel_drift_x * p_x - params.vel_drift_y * p_y -
         params.mu) / (k * params.T)) + 1.))

    af.eval(f)
    return (f)